![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > ax-strcoll | GIF version |
Description: Axiom scheme of strong collection. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. (Contributed by BJ, 5-Oct-2019.) |
Ref | Expression |
---|---|
ax-strcoll | ⊢ ∀𝑎(∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . . . 5 wff 𝜑 | |
2 | vy | . . . . 5 setvar 𝑦 | |
3 | 1, 2 | wex 1381 | . . . 4 wff ∃𝑦𝜑 |
4 | vx | . . . 4 setvar 𝑥 | |
5 | va | . . . . 5 setvar 𝑎 | |
6 | 5 | cv 1242 | . . . 4 class 𝑎 |
7 | 3, 4, 6 | wral 2306 | . . 3 wff ∀𝑥 ∈ 𝑎 ∃𝑦𝜑 |
8 | vb | . . . . . . 7 setvar 𝑏 | |
9 | 2, 8 | wel 1394 | . . . . . 6 wff 𝑦 ∈ 𝑏 |
10 | 1, 4, 6 | wrex 2307 | . . . . . 6 wff ∃𝑥 ∈ 𝑎 𝜑 |
11 | 9, 10 | wb 98 | . . . . 5 wff (𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑) |
12 | 11, 2 | wal 1241 | . . . 4 wff ∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑) |
13 | 12, 8 | wex 1381 | . . 3 wff ∃𝑏∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑) |
14 | 7, 13 | wi 4 | . 2 wff (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑)) |
15 | 14, 5 | wal 1241 | 1 wff ∀𝑎(∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏∀𝑦(𝑦 ∈ 𝑏 ↔ ∃𝑥 ∈ 𝑎 𝜑)) |
Colors of variables: wff set class |
This axiom is referenced by: strcoll2 10108 |
Copyright terms: Public domain | W3C validator |