![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbnv | GIF version |
Description: Version of sbn 1823 where x and y are distinct. (Contributed by Jim Kingdon, 18-Dec-2017.) |
Ref | Expression |
---|---|
sbnv | ⊢ ([y / x] ¬ φ ↔ ¬ [y / x]φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 1763 | . . 3 ⊢ ([y / x] ¬ φ ↔ ∀x(x = y → ¬ φ)) | |
2 | alinexa 1491 | . . 3 ⊢ (∀x(x = y → ¬ φ) ↔ ¬ ∃x(x = y ∧ φ)) | |
3 | 1, 2 | bitri 173 | . 2 ⊢ ([y / x] ¬ φ ↔ ¬ ∃x(x = y ∧ φ)) |
4 | sb5 1764 | . 2 ⊢ ([y / x]φ ↔ ∃x(x = y ∧ φ)) | |
5 | 3, 4 | xchbinxr 607 | 1 ⊢ ([y / x] ¬ φ ↔ ¬ [y / x]φ) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ↔ wb 98 ∀wal 1240 ∃wex 1378 [wsb 1642 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-5 1333 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-11 1394 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 |
This theorem depends on definitions: df-bi 110 df-tru 1245 df-fal 1248 df-sb 1643 |
This theorem is referenced by: sbn 1823 |
Copyright terms: Public domain | W3C validator |