ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbnv Unicode version

Theorem sbnv 1768
Description: Version of sbn 1826 where and are distinct. (Contributed by Jim Kingdon, 18-Dec-2017.)
Assertion
Ref Expression
sbnv
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem sbnv
StepHypRef Expression
1 sb6 1766 . . 3
2 alinexa 1494 . . 3
31, 2bitri 173 . 2
4 sb5 1767 . 2
53, 4xchbinxr 608 1
Colors of variables: wff set class
Syntax hints:   wn 3   wi 4   wa 97   wb 98  wal 1241  wex 1381  wsb 1645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-fal 1249  df-sb 1646
This theorem is referenced by:  sbn  1826
  Copyright terms: Public domain W3C validator