Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcel2gv Structured version   GIF version

Theorem sbcel2gv 2799
 Description: Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbcel2gv (B 𝑉 → ([B / x]A xA B))
Distinct variable group:   x,A
Allowed substitution hints:   B(x)   𝑉(x)

Proof of Theorem sbcel2gv
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 eleq2 2083 . 2 (x = y → (A xA y))
2 eleq2 2083 . 2 (y = B → (A yA B))
31, 2sbcie2g 2773 1 (B 𝑉 → ([B / x]A xA B))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98   ∈ wcel 1374  [wsbc 2741 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004 This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-v 2537  df-sbc 2742 This theorem is referenced by:  csbvarg  2854
 Copyright terms: Public domain W3C validator