ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.45 GIF version

Theorem pm3.45 529
Description: Theorem *3.45 (Fact) of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.45 ((𝜑𝜓) → ((𝜑𝜒) → (𝜓𝜒)))

Proof of Theorem pm3.45
StepHypRef Expression
1 id 19 . 2 ((𝜑𝜓) → (𝜑𝜓))
21anim1d 319 1 ((𝜑𝜓) → ((𝜑𝜒) → (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  rabss2  3020
  Copyright terms: Public domain W3C validator