ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  im2anan9 GIF version

Theorem im2anan9 530
Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.)
Hypotheses
Ref Expression
im2an9.1 (𝜑 → (𝜓𝜒))
im2an9.2 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
im2anan9 ((𝜑𝜃) → ((𝜓𝜏) → (𝜒𝜂)))

Proof of Theorem im2anan9
StepHypRef Expression
1 im2an9.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 261 . 2 ((𝜑𝜃) → (𝜓𝜒))
3 im2an9.2 . . 3 (𝜃 → (𝜏𝜂))
43adantl 262 . 2 ((𝜑𝜃) → (𝜏𝜂))
52, 4anim12d 318 1 ((𝜑𝜃) → ((𝜓𝜏) → (𝜒𝜂)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  im2anan9r  531  trin  3861  xpss12  4432  f1oun  5133  poxp  5840  brecop  6183  enq0sym  6511  genpdisj  6602
  Copyright terms: Public domain W3C validator