ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anim1d Structured version   GIF version

Theorem anim1d 319
Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.)
Hypothesis
Ref Expression
anim1d.1 (φ → (ψχ))
Assertion
Ref Expression
anim1d (φ → ((ψ θ) → (χ θ)))

Proof of Theorem anim1d
StepHypRef Expression
1 anim1d.1 . 2 (φ → (ψχ))
2 idd 21 . 2 (φ → (θθ))
31, 2anim12d 318 1 (φ → ((ψ θ) → (χ θ)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  pm3.45  516  exdistrfor  1663  mopick2  1965  ssrexv  2982  ssdif  3055  ssrin  3139  reupick  3198  disjss1  3725  copsexg  3955  po3nr  4021  coss2  4419  fununi  4893  recexprlemlol  6460  recexprlemupu  6462
  Copyright terms: Public domain W3C validator