![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpt2eq3dva | GIF version |
Description: Slightly more general equality inference for the maps to notation. (Contributed by NM, 17-Oct-2013.) |
Ref | Expression |
---|---|
mpt2eq3dva.1 | ⊢ ((φ ∧ x ∈ A ∧ y ∈ B) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
mpt2eq3dva | ⊢ (φ → (x ∈ A, y ∈ B ↦ 𝐶) = (x ∈ A, y ∈ B ↦ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpt2eq3dva.1 | . . . . . 6 ⊢ ((φ ∧ x ∈ A ∧ y ∈ B) → 𝐶 = 𝐷) | |
2 | 1 | 3expb 1104 | . . . . 5 ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B)) → 𝐶 = 𝐷) |
3 | 2 | eqeq2d 2048 | . . . 4 ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B)) → (z = 𝐶 ↔ z = 𝐷)) |
4 | 3 | pm5.32da 425 | . . 3 ⊢ (φ → (((x ∈ A ∧ y ∈ B) ∧ z = 𝐶) ↔ ((x ∈ A ∧ y ∈ B) ∧ z = 𝐷))) |
5 | 4 | oprabbidv 5501 | . 2 ⊢ (φ → {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = 𝐶)} = {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = 𝐷)}) |
6 | df-mpt2 5460 | . 2 ⊢ (x ∈ A, y ∈ B ↦ 𝐶) = {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = 𝐶)} | |
7 | df-mpt2 5460 | . 2 ⊢ (x ∈ A, y ∈ B ↦ 𝐷) = {〈〈x, y〉, z〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ z = 𝐷)} | |
8 | 5, 6, 7 | 3eqtr4g 2094 | 1 ⊢ (φ → (x ∈ A, y ∈ B ↦ 𝐶) = (x ∈ A, y ∈ B ↦ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∧ w3a 884 = wceq 1242 ∈ wcel 1390 {coprab 5456 ↦ cmpt2 5457 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-11 1394 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-3an 886 df-tru 1245 df-nf 1347 df-sb 1643 df-clab 2024 df-cleq 2030 df-oprab 5459 df-mpt2 5460 |
This theorem is referenced by: mpt2eq3ia 5512 ofeq 5656 fmpt2co 5779 iseqeq2 8895 iseqeq3 8896 iseqval 8900 |
Copyright terms: Public domain | W3C validator |