Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpt2eq123i | GIF version |
Description: An equality inference for the maps to notation. (Contributed by NM, 15-Jul-2013.) |
Ref | Expression |
---|---|
mpt2eq123i.1 | ⊢ 𝐴 = 𝐷 |
mpt2eq123i.2 | ⊢ 𝐵 = 𝐸 |
mpt2eq123i.3 | ⊢ 𝐶 = 𝐹 |
Ref | Expression |
---|---|
mpt2eq123i | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpt2eq123i.1 | . . . 4 ⊢ 𝐴 = 𝐷 | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → 𝐴 = 𝐷) |
3 | mpt2eq123i.2 | . . . 4 ⊢ 𝐵 = 𝐸 | |
4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → 𝐵 = 𝐸) |
5 | mpt2eq123i.3 | . . . 4 ⊢ 𝐶 = 𝐹 | |
6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → 𝐶 = 𝐹) |
7 | 2, 4, 6 | mpt2eq123dv 5567 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
8 | 7 | trud 1252 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹) |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 ⊤wtru 1244 ↦ cmpt2 5514 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-11 1397 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-oprab 5516 df-mpt2 5517 |
This theorem is referenced by: ofmres 5763 |
Copyright terms: Public domain | W3C validator |