ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iotabii Structured version   GIF version

Theorem iotabii 4832
Description: Formula-building deduction rule for iota. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
iotabii.1 (φψ)
Assertion
Ref Expression
iotabii (℩xφ) = (℩xψ)

Proof of Theorem iotabii
StepHypRef Expression
1 iotabi 4819 . 2 (x(φψ) → (℩xφ) = (℩xψ))
2 iotabii.1 . 2 (φψ)
31, 2mpg 1337 1 (℩xφ) = (℩xψ)
Colors of variables: wff set class
Syntax hints:  wb 98   = wceq 1242  cio 4808
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-rex 2306  df-uni 3572  df-iota 4810
This theorem is referenced by:  riotav  5416
  Copyright terms: Public domain W3C validator