ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exbiri Structured version   GIF version

Theorem exbiri 364
Description: Inference form of exbir 1322. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.)
Hypothesis
Ref Expression
exbiri.1 ((φ ψ) → (χθ))
Assertion
Ref Expression
exbiri (φ → (ψ → (θχ)))

Proof of Theorem exbiri
StepHypRef Expression
1 exbiri.1 . . 3 ((φ ψ) → (χθ))
21biimpar 281 . 2 (((φ ψ) θ) → χ)
32exp31 346 1 (φ → (ψ → (θχ)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  biimp3ar  1235  eqrdav  2036  tfrlem9  5876  uzsubsubfz  8661  elfzodifsumelfzo  8807
  Copyright terms: Public domain W3C validator