ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsb1 Structured version   GIF version

Theorem equsb1 1665
Description: Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equsb1 [y / x]x = y

Proof of Theorem equsb1
StepHypRef Expression
1 sb2 1647 . 2 (x(x = yx = y) → [y / x]x = y)
2 id 19 . 2 (x = yx = y)
31, 2mpg 1337 1 [y / x]x = y
Colors of variables: wff set class
Syntax hints:  wi 4  [wsb 1642
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-i9 1420  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-sb 1643
This theorem is referenced by:  sbcocom  1841  elsb3  1849  elsb4  1850  pm13.183  2675  exss  3954  relelfvdm  5148
  Copyright terms: Public domain W3C validator