ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equsb1 Structured version   GIF version

Theorem equsb1 1646
Description: Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equsb1 [y / x]x = y

Proof of Theorem equsb1
StepHypRef Expression
1 sb2 1628 . 2 (x(x = yx = y) → [y / x]x = y)
2 id 19 . 2 (x = yx = y)
31, 2mpg 1316 1 [y / x]x = y
Colors of variables: wff set class
Syntax hints:  wi 4  [wsb 1623
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1312  ax-gen 1314  ax-ie1 1359  ax-ie2 1360  ax-4 1377  ax-i9 1400  ax-ial 1405
This theorem depends on definitions:  df-bi 110  df-sb 1624
This theorem is referenced by:  sbcocom  1822  elsb3  1830  elsb4  1831  pm13.183  2654  exss  3933  relelfvdm  5126
  Copyright terms: Public domain W3C validator