ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  drsb2 Structured version   GIF version

Theorem drsb2 1719
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
Assertion
Ref Expression
drsb2 (x x = y → ([x / z]φ ↔ [y / z]φ))

Proof of Theorem drsb2
StepHypRef Expression
1 sbequ 1718 . 2 (x = y → ([x / z]φ ↔ [y / z]φ))
21sps 1427 1 (x x = y → ([x / z]φ ↔ [y / z]φ))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 98  wal 1240  [wsb 1642
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator