Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intabssel1 Structured version   GIF version

Theorem bj-intabssel1 9198
Description: Version of intss1 3621 using a class abstraction and implicit substitution. Closed form of intmin3 3633. (Contributed by BJ, 29-Nov-2019.)
Hypotheses
Ref Expression
bj-intabssel1.nf xA
bj-intabssel1.nf2 xψ
bj-intabssel1.is (x = A → (ψφ))
Assertion
Ref Expression
bj-intabssel1 (A 𝑉 → (ψ {xφ} ⊆ A))

Proof of Theorem bj-intabssel1
StepHypRef Expression
1 bj-intabssel1.nf . . 3 xA
2 bj-intabssel1.nf2 . . 3 xψ
3 bj-intabssel1.is . . 3 (x = A → (ψφ))
41, 2, 3elabgf2 9188 . 2 (A 𝑉 → (ψA {xφ}))
5 intss1 3621 . 2 (A {xφ} → {xφ} ⊆ A)
64, 5syl6 29 1 (A 𝑉 → (ψ {xφ} ⊆ A))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1242  wnf 1346   wcel 1390  {cab 2023  wnfc 2162  wss 2911   cint 3606
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-tru 1245  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-v 2553  df-in 2918  df-ss 2925  df-int 3607
This theorem is referenced by:  bj-omssind  9323
  Copyright terms: Public domain W3C validator