ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axun2 Structured version   GIF version

Theorem axun2 4118
Description: A variant of the Axiom of Union ax-un 4116. For any set x, there exists a set y whose members are exactly the members of the members of x i.e. the union of x. Axiom Union of [BellMachover] p. 466. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
axun2 yz(z yw(z w w x))
Distinct variable group:   x,w,y,z

Proof of Theorem axun2
StepHypRef Expression
1 ax-un 4116 . 2 yz(w(z w w x) → z y)
21bm1.3ii 3848 1 yz(z yw(z w w x))
Colors of variables: wff set class
Syntax hints:   wa 97  wb 98  wal 1224  wex 1358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1312  ax-7 1313  ax-gen 1314  ax-ie1 1359  ax-ie2 1360  ax-8 1372  ax-4 1377  ax-14 1382  ax-17 1396  ax-i9 1400  ax-ial 1405  ax-sep 3845  ax-un 4116
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator