ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a5i Structured version   GIF version

Theorem a5i 1432
Description: Inference generalizing a consequent. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
a5i.1 (xφψ)
Assertion
Ref Expression
a5i (xφxψ)

Proof of Theorem a5i
StepHypRef Expression
1 hba1 1430 . . 3 (xφxxφ)
2 ax-5 1333 . . 3 (x(xφψ) → (xxφxψ))
31, 2syl5 28 . 2 (x(xφψ) → (xφxψ))
4 a5i.1 . 2 (xφψ)
53, 4mpg 1337 1 (xφxψ)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-5 1333  ax-gen 1335  ax-ial 1424
This theorem is referenced by:  hbae  1603  equveli  1639  hbsb2a  1684  hbsb2e  1685  aev  1690  dveeq2or  1694  hbsb2  1714  nfsb2or  1715  reu6  2724
  Copyright terms: Public domain W3C validator