Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbsb2e | GIF version |
Description: Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.) |
Ref | Expression |
---|---|
hbsb2e | ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb4e 1686 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) | |
2 | sb2 1650 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑) → [𝑦 / 𝑥]∃𝑦𝜑) | |
3 | 2 | a5i 1435 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑) → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑) |
4 | 1, 3 | syl 14 | 1 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1241 ∃wex 1381 [wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-11 1397 ax-4 1400 ax-i9 1423 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-sb 1646 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |