![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hbsb2a | GIF version |
Description: Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.) |
Ref | Expression |
---|---|
hbsb2a | ⊢ ([y / x]∀yφ → ∀x[y / x]φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb4a 1679 | . 2 ⊢ ([y / x]∀yφ → ∀x(x = y → φ)) | |
2 | sb2 1647 | . . 3 ⊢ (∀x(x = y → φ) → [y / x]φ) | |
3 | 2 | a5i 1432 | . 2 ⊢ (∀x(x = y → φ) → ∀x[y / x]φ) |
4 | 1, 3 | syl 14 | 1 ⊢ ([y / x]∀yφ → ∀x[y / x]φ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1240 [wsb 1642 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-11 1394 ax-4 1397 ax-i9 1420 ax-ial 1424 |
This theorem depends on definitions: df-bi 110 df-sb 1643 |
This theorem is referenced by: hbsb3 1686 |
Copyright terms: Public domain | W3C validator |