Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  8cn GIF version

Theorem 8cn 8001
 Description: The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
8cn 8 ∈ ℂ

Proof of Theorem 8cn
StepHypRef Expression
1 8re 8000 . 2 8 ∈ ℝ
21recni 7039 1 8 ∈ ℂ
 Colors of variables: wff set class Syntax hints:   ∈ wcel 1393  ℂcc 6887  8c8 7970 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-resscn 6976  ax-1re 6978  ax-addrcl 6981 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-in 2924  df-ss 2931  df-2 7973  df-3 7974  df-4 7975  df-5 7976  df-6 7977  df-7 7978  df-8 7979 This theorem is referenced by:  8p2e10  8066  8t2e16  8455  8t5e40  8458
 Copyright terms: Public domain W3C validator