ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8p2e10 GIF version

Theorem 8p2e10 8066
Description: 8 + 2 = 10. (Contributed by NM, 5-Feb-2007.)
Assertion
Ref Expression
8p2e10 (8 + 2) = 10

Proof of Theorem 8p2e10
StepHypRef Expression
1 df-2 7973 . . . . 5 2 = (1 + 1)
21oveq2i 5523 . . . 4 (8 + 2) = (8 + (1 + 1))
3 8cn 8001 . . . . 5 8 ∈ ℂ
4 ax-1cn 6977 . . . . 5 1 ∈ ℂ
53, 4, 4addassi 7035 . . . 4 ((8 + 1) + 1) = (8 + (1 + 1))
62, 5eqtr4i 2063 . . 3 (8 + 2) = ((8 + 1) + 1)
7 df-9 7980 . . . 4 9 = (8 + 1)
87oveq1i 5522 . . 3 (9 + 1) = ((8 + 1) + 1)
96, 8eqtr4i 2063 . 2 (8 + 2) = (9 + 1)
10 df-10 7981 . 2 10 = (9 + 1)
119, 10eqtr4i 2063 1 (8 + 2) = 10
Colors of variables: wff set class
Syntax hints:   = wceq 1243  (class class class)co 5512  1c1 6890   + caddc 6892  2c2 7964  8c8 7970  9c9 7971  10c10 7972
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-resscn 6976  ax-1cn 6977  ax-1re 6978  ax-addrcl 6981  ax-addass 6986
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-iota 4867  df-fv 4910  df-ov 5515  df-2 7973  df-3 7974  df-4 7975  df-5 7976  df-6 7977  df-7 7978  df-8 7979  df-9 7980  df-10 7981
This theorem is referenced by:  8p3e11  8423  8t5e40  8458
  Copyright terms: Public domain W3C validator