Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nf2 | Unicode version |
Description: An alternative definition of df-nf 1350, which does not involve nested quantifiers on the same variable. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nf2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1350 | . 2 | |
2 | nfa1 1434 | . . . 4 | |
3 | 2 | nfri 1412 | . . 3 |
4 | 3 | 19.23h 1387 | . 2 |
5 | 1, 4 | bitri 173 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 98 wal 1241 wnf 1349 wex 1381 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-gen 1338 ax-ie2 1383 ax-4 1400 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-nf 1350 |
This theorem is referenced by: nf3 1559 nf4dc 1560 nf4r 1561 eusv2i 4187 |
Copyright terms: Public domain | W3C validator |