Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  eusv2i Unicode version

Theorem eusv2i 4187
 Description: Two ways to express single-valuedness of a class expression . (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
eusv2i
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem eusv2i
StepHypRef Expression
1 nfeu1 1911 . . 3
2 nfcvd 2179 . . . . . 6
3 eusvnf 4185 . . . . . 6
42, 3nfeqd 2192 . . . . 5
5 nf2 1558 . . . . 5
64, 5sylib 127 . . . 4
7 19.2 1529 . . . 4
86, 7impbid1 130 . . 3
91, 8eubid 1907 . 2
109ibir 166 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1241   wceq 1243  wnf 1349  wex 1381  weu 1900 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-sbc 2765  df-csb 2853 This theorem is referenced by:  eusv2nf  4188
 Copyright terms: Public domain W3C validator