ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1orn Unicode version

Theorem f1orn 5079
Description: A one-to-one function maps onto its range. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
f1orn  F : -1-1-onto-> ran  F  F  Fn  Fun  `' F

Proof of Theorem f1orn
StepHypRef Expression
1 dff1o2 5074 . 2  F : -1-1-onto-> ran  F  F  Fn  Fun  `' F  ran  F  ran  F
2 eqid 2037 . . 3  ran  F  ran  F
3 df-3an 886 . . 3  F  Fn  Fun  `' F  ran  F  ran  F  F  Fn  Fun  `' F  ran  F  ran  F
42, 3mpbiran2 847 . 2  F  Fn  Fun  `' F  ran  F  ran  F  F  Fn  Fun  `' F
51, 4bitri 173 1  F : -1-1-onto-> ran  F  F  Fn  Fun  `' F
Colors of variables: wff set class
Syntax hints:   wa 97   wb 98   w3a 884   wceq 1242   `'ccnv 4287   ran crn 4289   Fun wfun 4839    Fn wfn 4840   -1-1-onto->wf1o 4844
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-3an 886  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-in 2918  df-ss 2925  df-f 4849  df-f1 4850  df-fo 4851  df-f1o 4852
This theorem is referenced by:  f1f1orn  5080
  Copyright terms: Public domain W3C validator