ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1orn Unicode version

Theorem f1orn 5136
Description: A one-to-one function maps onto its range. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
f1orn  |-  ( F : A -1-1-onto-> ran  F  <->  ( F  Fn  A  /\  Fun  `' F ) )

Proof of Theorem f1orn
StepHypRef Expression
1 dff1o2 5131 . 2  |-  ( F : A -1-1-onto-> ran  F  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  ran  F ) )
2 eqid 2040 . . 3  |-  ran  F  =  ran  F
3 df-3an 887 . . 3  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  ran  F )  <->  ( ( F  Fn  A  /\  Fun  `' F )  /\  ran  F  =  ran  F ) )
42, 3mpbiran2 848 . 2  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  ran  F )  <->  ( F  Fn  A  /\  Fun  `' F ) )
51, 4bitri 173 1  |-  ( F : A -1-1-onto-> ran  F  <->  ( F  Fn  A  /\  Fun  `' F ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243   `'ccnv 4344   ran crn 4346   Fun wfun 4896    Fn wfn 4897   -1-1-onto->wf1o 4901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-in 2924  df-ss 2931  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909
This theorem is referenced by:  f1f1orn  5137
  Copyright terms: Public domain W3C validator