ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axi12 Structured version   Unicode version

Theorem axi12 1404
Description: Proof that ax-i12 1395 follows from ax-bnd 1396. So that we can track which theorems rely on ax-bnd 1396, proofs should reference ax-i12 1395 rather than this theorem. (Contributed by Jim Kingdon, 17-Aug-2018.) (New usage is discouraged). (Proof modification is discouraged.)
Assertion
Ref Expression
axi12

Proof of Theorem axi12
StepHypRef Expression
1 ax-bnd 1396 . 2
2 sp 1398 . . . 4
32orim2i 677 . . 3
43orim2i 677 . 2
51, 4ax-mp 7 1
Colors of variables: wff set class
Syntax hints:   wi 4   wo 628  wal 1240   wceq 1242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-bnd 1396  ax-4 1397
This theorem depends on definitions:  df-bi 110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator