MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftfval Structured version   Visualization version   GIF version

Theorem shftfval 13658
Description: The value of the sequence shifter operation is a function on . 𝐴 is ordinarily an integer. (Contributed by NM, 20-Jul-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftfval (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦

Proof of Theorem shftfval
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6577 . . . . . . . . . 10 (𝑥𝐴) ∈ V
2 vex 3176 . . . . . . . . . 10 𝑦 ∈ V
31, 2breldm 5251 . . . . . . . . 9 ((𝑥𝐴)𝐹𝑦 → (𝑥𝐴) ∈ dom 𝐹)
4 npcan 10169 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑥𝐴) + 𝐴) = 𝑥)
54eqcomd 2616 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝐴 ∈ ℂ) → 𝑥 = ((𝑥𝐴) + 𝐴))
65ancoms 468 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → 𝑥 = ((𝑥𝐴) + 𝐴))
7 oveq1 6556 . . . . . . . . . . 11 (𝑤 = (𝑥𝐴) → (𝑤 + 𝐴) = ((𝑥𝐴) + 𝐴))
87eqeq2d 2620 . . . . . . . . . 10 (𝑤 = (𝑥𝐴) → (𝑥 = (𝑤 + 𝐴) ↔ 𝑥 = ((𝑥𝐴) + 𝐴)))
98rspcev 3282 . . . . . . . . 9 (((𝑥𝐴) ∈ dom 𝐹𝑥 = ((𝑥𝐴) + 𝐴)) → ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴))
103, 6, 9syl2anr 494 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴))
11 vex 3176 . . . . . . . . 9 𝑥 ∈ V
12 eqeq1 2614 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑧 = (𝑤 + 𝐴) ↔ 𝑥 = (𝑤 + 𝐴)))
1312rexbidv 3034 . . . . . . . . 9 (𝑧 = 𝑥 → (∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴) ↔ ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴)))
1411, 13elab 3319 . . . . . . . 8 (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ↔ ∃𝑤 ∈ dom 𝐹 𝑥 = (𝑤 + 𝐴))
1510, 14sylibr 223 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → 𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)})
161, 2brelrn 5277 . . . . . . . 8 ((𝑥𝐴)𝐹𝑦𝑦 ∈ ran 𝐹)
1716adantl 481 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → 𝑦 ∈ ran 𝐹)
1815, 17jca 553 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) ∧ (𝑥𝐴)𝐹𝑦) → (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹))
1918expl 646 . . . . 5 (𝐴 ∈ ℂ → ((𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) → (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)))
2019ssopab2dv 4929 . . . 4 (𝐴 ∈ ℂ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ⊆ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)})
21 df-xp 5044 . . . 4 ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∧ 𝑦 ∈ ran 𝐹)}
2220, 21syl6sseqr 3615 . . 3 (𝐴 ∈ ℂ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ⊆ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹))
23 shftfval.1 . . . . . 6 𝐹 ∈ V
2423dmex 6991 . . . . 5 dom 𝐹 ∈ V
2524abrexex 7033 . . . 4 {𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} ∈ V
2623rnex 6992 . . . 4 ran 𝐹 ∈ V
2725, 26xpex 6860 . . 3 ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V
28 ssexg 4732 . . 3 (({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ⊆ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∧ ({𝑧 ∣ ∃𝑤 ∈ dom 𝐹 𝑧 = (𝑤 + 𝐴)} × ran 𝐹) ∈ V) → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∈ V)
2922, 27, 28sylancl 693 . 2 (𝐴 ∈ ℂ → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∈ V)
30 breq 4585 . . . . . 6 (𝑧 = 𝐹 → ((𝑥𝑤)𝑧𝑦 ↔ (𝑥𝑤)𝐹𝑦))
3130anbi2d 736 . . . . 5 (𝑧 = 𝐹 → ((𝑥 ∈ ℂ ∧ (𝑥𝑤)𝑧𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝐹𝑦)))
3231opabbidv 4648 . . . 4 (𝑧 = 𝐹 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝑧𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝐹𝑦)})
33 oveq2 6557 . . . . . . 7 (𝑤 = 𝐴 → (𝑥𝑤) = (𝑥𝐴))
3433breq1d 4593 . . . . . 6 (𝑤 = 𝐴 → ((𝑥𝑤)𝐹𝑦 ↔ (𝑥𝐴)𝐹𝑦))
3534anbi2d 736 . . . . 5 (𝑤 = 𝐴 → ((𝑥 ∈ ℂ ∧ (𝑥𝑤)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)))
3635opabbidv 4648 . . . 4 (𝑤 = 𝐴 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝐹𝑦)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
37 df-shft 13655 . . . 4 shift = (𝑧 ∈ V, 𝑤 ∈ ℂ ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝑤)𝑧𝑦)})
3832, 36, 37ovmpt2g 6693 . . 3 ((𝐹 ∈ V ∧ 𝐴 ∈ ℂ ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∈ V) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
3923, 38mp3an1 1403 . 2 ((𝐴 ∈ ℂ ∧ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} ∈ V) → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
4029, 39mpdan 699 1 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  {cab 2596  wrex 2897  Vcvv 3173  wss 3540   class class class wbr 4583  {copab 4642   × cxp 5036  dom cdm 5038  ran crn 5039  (class class class)co 6549  cc 9813   + caddc 9818  cmin 10145   shift cshi 13654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-ltxr 9958  df-sub 10147  df-shft 13655
This theorem is referenced by:  shftdm  13659  shftfib  13660  shftfn  13661  2shfti  13668  shftidt2  13669
  Copyright terms: Public domain W3C validator