MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rebtwnz Structured version   Visualization version   GIF version

Theorem rebtwnz 11663
Description: There is a unique greatest integer less than or equal to a real number. Exercise 4 of [Apostol] p. 28. (Contributed by NM, 15-Nov-2004.)
Assertion
Ref Expression
rebtwnz (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem rebtwnz
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 renegcl 10223 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2 zbtwnre 11662 . . 3 (-𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)))
31, 2syl 17 . 2 (𝐴 ∈ ℝ → ∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)))
4 znegcl 11289 . . . 4 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
5 znegcl 11289 . . . . 5 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
6 zcn 11259 . . . . . 6 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
7 zcn 11259 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
8 negcon2 10213 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑦 = -𝑥𝑥 = -𝑦))
96, 7, 8syl2an 493 . . . . 5 ((𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑦 = -𝑥𝑥 = -𝑦))
105, 9reuhyp 4822 . . . 4 (𝑦 ∈ ℤ → ∃!𝑥 ∈ ℤ 𝑦 = -𝑥)
11 breq2 4587 . . . . 5 (𝑦 = -𝑥 → (-𝐴𝑦 ↔ -𝐴 ≤ -𝑥))
12 breq1 4586 . . . . 5 (𝑦 = -𝑥 → (𝑦 < (-𝐴 + 1) ↔ -𝑥 < (-𝐴 + 1)))
1311, 12anbi12d 743 . . . 4 (𝑦 = -𝑥 → ((-𝐴𝑦𝑦 < (-𝐴 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))))
144, 10, 13reuxfr 4820 . . 3 (∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)))
15 zre 11258 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
16 leneg 10410 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
1716ancoms 468 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
18 peano2rem 10227 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
19 ltneg 10407 . . . . . . . . 9 (((𝐴 − 1) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1)))
2018, 19sylan 487 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥 ↔ -𝑥 < -(𝐴 − 1)))
21 1re 9918 . . . . . . . . 9 1 ∈ ℝ
22 ltsubadd 10377 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥𝐴 < (𝑥 + 1)))
2321, 22mp3an2 1404 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐴 − 1) < 𝑥𝐴 < (𝑥 + 1)))
24 recn 9905 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
25 ax-1cn 9873 . . . . . . . . . . 11 1 ∈ ℂ
26 negsubdi 10216 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (-𝐴 + 1))
2724, 25, 26sylancl 693 . . . . . . . . . 10 (𝐴 ∈ ℝ → -(𝐴 − 1) = (-𝐴 + 1))
2827adantr 480 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → -(𝐴 − 1) = (-𝐴 + 1))
2928breq2d 4595 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝑥 < -(𝐴 − 1) ↔ -𝑥 < (-𝐴 + 1)))
3020, 23, 293bitr3d 297 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐴 < (𝑥 + 1) ↔ -𝑥 < (-𝐴 + 1)))
3117, 30anbi12d 743 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))))
3215, 31sylan2 490 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝑥𝐴𝐴 < (𝑥 + 1)) ↔ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1))))
3332bicomd 212 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ (𝑥𝐴𝐴 < (𝑥 + 1))))
3433reubidva 3102 . . 3 (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ -𝑥 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
3514, 34syl5bb 271 . 2 (𝐴 ∈ ℝ → (∃!𝑦 ∈ ℤ (-𝐴𝑦𝑦 < (-𝐴 + 1)) ↔ ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1))))
363, 35mpbid 221 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴𝐴 < (𝑥 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  ∃!wreu 2898   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145  -cneg 10146  cz 11254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564
This theorem is referenced by:  flcl  12458  fllelt  12460  flflp1  12470  flbi  12479  ltflcei  32567
  Copyright terms: Public domain W3C validator