MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmpwdvds Structured version   Visualization version   GIF version

Theorem prmpwdvds 15446
Description: A relation involving divisibility by a prime power. (Contributed by Mario Carneiro, 2-Mar-2014.)
Assertion
Ref Expression
prmpwdvds (((𝐾 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ (𝐷 ∥ (𝐾 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1))))) → (𝑃𝑁) ∥ 𝐷)

Proof of Theorem prmpwdvds
Dummy variables 𝑘 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 786 . . 3 (((𝐾 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ)) → 𝐾 ∈ ℤ)
2 oveq2 6557 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝑃𝑥) = (𝑃↑1))
32oveq2d 6565 . . . . . . . . . . . 12 (𝑥 = 1 → (𝑘 · (𝑃𝑥)) = (𝑘 · (𝑃↑1)))
43breq2d 4595 . . . . . . . . . . 11 (𝑥 = 1 → (𝐷 ∥ (𝑘 · (𝑃𝑥)) ↔ 𝐷 ∥ (𝑘 · (𝑃↑1))))
5 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (𝑥 − 1) = (1 − 1))
65oveq2d 6565 . . . . . . . . . . . . . 14 (𝑥 = 1 → (𝑃↑(𝑥 − 1)) = (𝑃↑(1 − 1)))
76oveq2d 6565 . . . . . . . . . . . . 13 (𝑥 = 1 → (𝑘 · (𝑃↑(𝑥 − 1))) = (𝑘 · (𝑃↑(1 − 1))))
87breq2d 4595 . . . . . . . . . . . 12 (𝑥 = 1 → (𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))))
98notbid 307 . . . . . . . . . . 11 (𝑥 = 1 → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))))
104, 9anbi12d 743 . . . . . . . . . 10 (𝑥 = 1 → ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) ↔ (𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1))))))
112breq1d 4593 . . . . . . . . . 10 (𝑥 = 1 → ((𝑃𝑥) ∥ 𝐷 ↔ (𝑃↑1) ∥ 𝐷))
1210, 11imbi12d 333 . . . . . . . . 9 (𝑥 = 1 → (((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))) → (𝑃↑1) ∥ 𝐷)))
1312ralbidv 2969 . . . . . . . 8 (𝑥 = 1 → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))) → (𝑃↑1) ∥ 𝐷)))
1413imbi2d 329 . . . . . . 7 (𝑥 = 1 → (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷)) ↔ ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))) → (𝑃↑1) ∥ 𝐷))))
15 oveq2 6557 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑃𝑥) = (𝑃𝑛))
1615oveq2d 6565 . . . . . . . . . . . 12 (𝑥 = 𝑛 → (𝑘 · (𝑃𝑥)) = (𝑘 · (𝑃𝑛)))
1716breq2d 4595 . . . . . . . . . . 11 (𝑥 = 𝑛 → (𝐷 ∥ (𝑘 · (𝑃𝑥)) ↔ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
18 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → (𝑥 − 1) = (𝑛 − 1))
1918oveq2d 6565 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → (𝑃↑(𝑥 − 1)) = (𝑃↑(𝑛 − 1)))
2019oveq2d 6565 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (𝑘 · (𝑃↑(𝑥 − 1))) = (𝑘 · (𝑃↑(𝑛 − 1))))
2120breq2d 4595 . . . . . . . . . . . 12 (𝑥 = 𝑛 → (𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))))
2221notbid 307 . . . . . . . . . . 11 (𝑥 = 𝑛 → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))))
2317, 22anbi12d 743 . . . . . . . . . 10 (𝑥 = 𝑛 → ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) ↔ (𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1))))))
2415breq1d 4593 . . . . . . . . . 10 (𝑥 = 𝑛 → ((𝑃𝑥) ∥ 𝐷 ↔ (𝑃𝑛) ∥ 𝐷))
2523, 24imbi12d 333 . . . . . . . . 9 (𝑥 = 𝑛 → (((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)))
2625ralbidv 2969 . . . . . . . 8 (𝑥 = 𝑛 → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)))
2726imbi2d 329 . . . . . . 7 (𝑥 = 𝑛 → (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷)) ↔ ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷))))
28 oveq2 6557 . . . . . . . . . . . . 13 (𝑥 = (𝑛 + 1) → (𝑃𝑥) = (𝑃↑(𝑛 + 1)))
2928oveq2d 6565 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → (𝑘 · (𝑃𝑥)) = (𝑘 · (𝑃↑(𝑛 + 1))))
3029breq2d 4595 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (𝐷 ∥ (𝑘 · (𝑃𝑥)) ↔ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1)))))
31 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑥 = (𝑛 + 1) → (𝑥 − 1) = ((𝑛 + 1) − 1))
3231oveq2d 6565 . . . . . . . . . . . . . 14 (𝑥 = (𝑛 + 1) → (𝑃↑(𝑥 − 1)) = (𝑃↑((𝑛 + 1) − 1)))
3332oveq2d 6565 . . . . . . . . . . . . 13 (𝑥 = (𝑛 + 1) → (𝑘 · (𝑃↑(𝑥 − 1))) = (𝑘 · (𝑃↑((𝑛 + 1) − 1))))
3433breq2d 4595 . . . . . . . . . . . 12 (𝑥 = (𝑛 + 1) → (𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))))
3534notbid 307 . . . . . . . . . . 11 (𝑥 = (𝑛 + 1) → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))))
3630, 35anbi12d 743 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) ↔ (𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1))))))
3728breq1d 4593 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → ((𝑃𝑥) ∥ 𝐷 ↔ (𝑃↑(𝑛 + 1)) ∥ 𝐷))
3836, 37imbi12d 333 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
3938ralbidv 2969 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
4039imbi2d 329 . . . . . . 7 (𝑥 = (𝑛 + 1) → (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷)) ↔ ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷))))
41 oveq2 6557 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → (𝑃𝑥) = (𝑃𝑁))
4241oveq2d 6565 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝑘 · (𝑃𝑥)) = (𝑘 · (𝑃𝑁)))
4342breq2d 4595 . . . . . . . . . . 11 (𝑥 = 𝑁 → (𝐷 ∥ (𝑘 · (𝑃𝑥)) ↔ 𝐷 ∥ (𝑘 · (𝑃𝑁))))
44 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑥 = 𝑁 → (𝑥 − 1) = (𝑁 − 1))
4544oveq2d 6565 . . . . . . . . . . . . . 14 (𝑥 = 𝑁 → (𝑃↑(𝑥 − 1)) = (𝑃↑(𝑁 − 1)))
4645oveq2d 6565 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → (𝑘 · (𝑃↑(𝑥 − 1))) = (𝑘 · (𝑃↑(𝑁 − 1))))
4746breq2d 4595 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))))
4847notbid 307 . . . . . . . . . . 11 (𝑥 = 𝑁 → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1))) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))))
4943, 48anbi12d 743 . . . . . . . . . 10 (𝑥 = 𝑁 → ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) ↔ (𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1))))))
5041breq1d 4593 . . . . . . . . . 10 (𝑥 = 𝑁 → ((𝑃𝑥) ∥ 𝐷 ↔ (𝑃𝑁) ∥ 𝐷))
5149, 50imbi12d 333 . . . . . . . . 9 (𝑥 = 𝑁 → (((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷)))
5251ralbidv 2969 . . . . . . . 8 (𝑥 = 𝑁 → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷) ↔ ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷)))
5352imbi2d 329 . . . . . . 7 (𝑥 = 𝑁 → (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑥)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑥 − 1)))) → (𝑃𝑥) ∥ 𝐷)) ↔ ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷))))
54 breq1 4586 . . . . . . . . . . . . . 14 (𝑥 = 𝐷 → (𝑥 ∥ (𝑘 · 𝑃) ↔ 𝐷 ∥ (𝑘 · 𝑃)))
55 breq1 4586 . . . . . . . . . . . . . . 15 (𝑥 = 𝐷 → (𝑥𝑘𝐷𝑘))
5655notbid 307 . . . . . . . . . . . . . 14 (𝑥 = 𝐷 → (¬ 𝑥𝑘 ↔ ¬ 𝐷𝑘))
5754, 56anbi12d 743 . . . . . . . . . . . . 13 (𝑥 = 𝐷 → ((𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘) ↔ (𝐷 ∥ (𝑘 · 𝑃) ∧ ¬ 𝐷𝑘)))
58 breq2 4587 . . . . . . . . . . . . 13 (𝑥 = 𝐷 → (𝑃𝑥𝑃𝐷))
5957, 58imbi12d 333 . . . . . . . . . . . 12 (𝑥 = 𝐷 → (((𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘) → 𝑃𝑥) ↔ ((𝐷 ∥ (𝑘 · 𝑃) ∧ ¬ 𝐷𝑘) → 𝑃𝐷)))
6059imbi2d 329 . . . . . . . . . . 11 (𝑥 = 𝐷 → (((𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ) → ((𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘) → 𝑃𝑥)) ↔ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ) → ((𝐷 ∥ (𝑘 · 𝑃) ∧ ¬ 𝐷𝑘) → 𝑃𝐷))))
61 simplrl 796 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∥ (𝑘 · 𝑃)) → 𝑃 ∈ ℙ)
62 simpll 786 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∥ (𝑘 · 𝑃)) → 𝑥 ∈ ℤ)
63 coprm 15261 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑥 ∈ ℤ) → (¬ 𝑃𝑥 ↔ (𝑃 gcd 𝑥) = 1))
6461, 62, 63syl2anc 691 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∥ (𝑘 · 𝑃)) → (¬ 𝑃𝑥 ↔ (𝑃 gcd 𝑥) = 1))
65 zcn 11259 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
6665ad2antll 761 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℂ)
67 prmz 15227 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
6867ad2antrl 760 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℤ)
6968zcnd 11359 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℂ)
7066, 69mulcomd 9940 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · 𝑃) = (𝑃 · 𝑘))
7170breq2d 4595 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑥 ∥ (𝑘 · 𝑃) ↔ 𝑥 ∥ (𝑃 · 𝑘)))
72 simpl 472 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑥 ∈ ℤ)
73 gcdcom 15073 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑃 gcd 𝑥) = (𝑥 gcd 𝑃))
7468, 72, 73syl2anc 691 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃 gcd 𝑥) = (𝑥 gcd 𝑃))
7574eqeq1d 2612 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃 gcd 𝑥) = 1 ↔ (𝑥 gcd 𝑃) = 1))
7671, 75anbi12d 743 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 ∥ (𝑘 · 𝑃) ∧ (𝑃 gcd 𝑥) = 1) ↔ (𝑥 ∥ (𝑃 · 𝑘) ∧ (𝑥 gcd 𝑃) = 1)))
77 simprr 792 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ)
78 coprmdvds 15204 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑥 ∥ (𝑃 · 𝑘) ∧ (𝑥 gcd 𝑃) = 1) → 𝑥𝑘))
7972, 68, 77, 78syl3anc 1318 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 ∥ (𝑃 · 𝑘) ∧ (𝑥 gcd 𝑃) = 1) → 𝑥𝑘))
8076, 79sylbid 229 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 ∥ (𝑘 · 𝑃) ∧ (𝑃 gcd 𝑥) = 1) → 𝑥𝑘))
8180expdimp 452 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∥ (𝑘 · 𝑃)) → ((𝑃 gcd 𝑥) = 1 → 𝑥𝑘))
8264, 81sylbid 229 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∥ (𝑘 · 𝑃)) → (¬ 𝑃𝑥𝑥𝑘))
8382con1d 138 . . . . . . . . . . . . 13 (((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∥ (𝑘 · 𝑃)) → (¬ 𝑥𝑘𝑃𝑥))
8483expimpd 627 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘) → 𝑃𝑥))
8584ex 449 . . . . . . . . . . 11 (𝑥 ∈ ℤ → ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ) → ((𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘) → 𝑃𝑥)))
8660, 85vtoclga 3245 . . . . . . . . . 10 (𝐷 ∈ ℤ → ((𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ) → ((𝐷 ∥ (𝑘 · 𝑃) ∧ ¬ 𝐷𝑘) → 𝑃𝐷)))
8786impl 648 . . . . . . . . 9 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → ((𝐷 ∥ (𝑘 · 𝑃) ∧ ¬ 𝐷𝑘) → 𝑃𝐷))
8867zcnd 11359 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
8988exp1d 12865 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → (𝑃↑1) = 𝑃)
9089ad2antlr 759 . . . . . . . . . . . 12 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑃↑1) = 𝑃)
9190oveq2d 6565 . . . . . . . . . . 11 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑃↑1)) = (𝑘 · 𝑃))
9291breq2d 4595 . . . . . . . . . 10 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝐷 ∥ (𝑘 · (𝑃↑1)) ↔ 𝐷 ∥ (𝑘 · 𝑃)))
93 1m1e0 10966 . . . . . . . . . . . . . . . 16 (1 − 1) = 0
9493oveq2i 6560 . . . . . . . . . . . . . . 15 (𝑃↑(1 − 1)) = (𝑃↑0)
9567ad2antlr 759 . . . . . . . . . . . . . . . . 17 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → 𝑃 ∈ ℤ)
9695zcnd 11359 . . . . . . . . . . . . . . . 16 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → 𝑃 ∈ ℂ)
9796exp0d 12864 . . . . . . . . . . . . . . 15 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑃↑0) = 1)
9894, 97syl5eq 2656 . . . . . . . . . . . . . 14 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑃↑(1 − 1)) = 1)
9998oveq2d 6565 . . . . . . . . . . . . 13 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑃↑(1 − 1))) = (𝑘 · 1))
10065adantl 481 . . . . . . . . . . . . . 14 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
101100mulid1d 9936 . . . . . . . . . . . . 13 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑘 · 1) = 𝑘)
10299, 101eqtrd 2644 . . . . . . . . . . . 12 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑘 · (𝑃↑(1 − 1))) = 𝑘)
103102breq2d 4595 . . . . . . . . . . 11 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝐷 ∥ (𝑘 · (𝑃↑(1 − 1))) ↔ 𝐷𝑘))
104103notbid 307 . . . . . . . . . 10 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1))) ↔ ¬ 𝐷𝑘))
10592, 104anbi12d 743 . . . . . . . . 9 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → ((𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))) ↔ (𝐷 ∥ (𝑘 · 𝑃) ∧ ¬ 𝐷𝑘)))
10696exp1d 12865 . . . . . . . . . 10 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (𝑃↑1) = 𝑃)
107106breq1d 4593 . . . . . . . . 9 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → ((𝑃↑1) ∥ 𝐷𝑃𝐷))
10887, 105, 1073imtr4d 282 . . . . . . . 8 (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → ((𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))) → (𝑃↑1) ∥ 𝐷))
109108ralrimiva 2949 . . . . . . 7 ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑1)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(1 − 1)))) → (𝑃↑1) ∥ 𝐷))
110 oveq1 6556 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝑘 · (𝑃𝑛)) = (𝑥 · (𝑃𝑛)))
111110breq2d 4595 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → (𝐷 ∥ (𝑘 · (𝑃𝑛)) ↔ 𝐷 ∥ (𝑥 · (𝑃𝑛))))
112 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑘 = 𝑥 → (𝑘 · (𝑃↑(𝑛 − 1))) = (𝑥 · (𝑃↑(𝑛 − 1))))
113112breq2d 4595 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1))) ↔ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))))
114113notbid 307 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1))) ↔ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))))
115111, 114anbi12d 743 . . . . . . . . . . . 12 (𝑘 = 𝑥 → ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) ↔ (𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1))))))
116115imbi1d 330 . . . . . . . . . . 11 (𝑘 = 𝑥 → (((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)))
117116cbvralv 3147 . . . . . . . . . 10 (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) ↔ ∀𝑥 ∈ ℤ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷))
118 simprr 792 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ)
11967ad2antrl 760 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℤ)
120118, 119zmulcld 11364 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · 𝑃) ∈ ℤ)
121 oveq1 6556 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑘 · 𝑃) → (𝑥 · (𝑃𝑛)) = ((𝑘 · 𝑃) · (𝑃𝑛)))
122121breq2d 4595 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑘 · 𝑃) → (𝐷 ∥ (𝑥 · (𝑃𝑛)) ↔ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛))))
123 oveq1 6556 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑘 · 𝑃) → (𝑥 · (𝑃↑(𝑛 − 1))) = ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1))))
124123breq2d 4595 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑘 · 𝑃) → (𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1))) ↔ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))))
125124notbid 307 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑘 · 𝑃) → (¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1))) ↔ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))))
126122, 125anbi12d 743 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑘 · 𝑃) → ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) ↔ (𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1))))))
127126imbi1d 330 . . . . . . . . . . . . . . 15 (𝑥 = (𝑘 · 𝑃) → (((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) ↔ ((𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)))
128127rspcv 3278 . . . . . . . . . . . . . 14 ((𝑘 · 𝑃) ∈ ℤ → (∀𝑥 ∈ ℤ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ((𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)))
129120, 128syl 17 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (∀𝑥 ∈ ℤ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ((𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)))
130 nnnn0 11176 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
131130ad2antrr 758 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑛 ∈ ℕ0)
132 zexpcl 12737 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℤ ∧ 𝑛 ∈ ℕ0) → (𝑃𝑛) ∈ ℤ)
133119, 131, 132syl2anc 691 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) ∈ ℤ)
134 simplr 788 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝐷 ∈ ℤ)
135 divides 14823 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑛) ∈ ℤ ∧ 𝐷 ∈ ℤ) → ((𝑃𝑛) ∥ 𝐷 ↔ ∃𝑥 ∈ ℤ (𝑥 · (𝑃𝑛)) = 𝐷))
136133, 134, 135syl2anc 691 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃𝑛) ∥ 𝐷 ↔ ∃𝑥 ∈ ℤ (𝑥 · (𝑃𝑛)) = 𝐷))
13784adantll 746 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘) → 𝑃𝑥))
138 prmnn 15226 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
139138ad2antrl 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℕ)
140139nncnd 10913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℂ)
141130ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑛 ∈ ℕ0)
142140, 141expp1d 12871 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃↑(𝑛 + 1)) = ((𝑃𝑛) · 𝑃))
143139, 141nnexpcld 12892 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) ∈ ℕ)
144143nncnd 10913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) ∈ ℂ)
145144, 140mulcomd 9940 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃𝑛) · 𝑃) = (𝑃 · (𝑃𝑛)))
146142, 145eqtrd 2644 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃↑(𝑛 + 1)) = (𝑃 · (𝑃𝑛)))
147146oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝑃↑(𝑛 + 1))) = (𝑘 · (𝑃 · (𝑃𝑛))))
14865ad2antll 761 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℂ)
149148, 140, 144mulassd 9942 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑃) · (𝑃𝑛)) = (𝑘 · (𝑃 · (𝑃𝑛))))
150147, 149eqtr4d 2647 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝑃↑(𝑛 + 1))) = ((𝑘 · 𝑃) · (𝑃𝑛)))
151150breq2d 4595 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ↔ (𝑥 · (𝑃𝑛)) ∥ ((𝑘 · 𝑃) · (𝑃𝑛))))
152 simplr 788 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑥 ∈ ℤ)
153 simprr 792 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℤ)
154139nnzd 11357 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℤ)
155153, 154zmulcld 11364 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · 𝑃) ∈ ℤ)
156143nnzd 11357 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) ∈ ℤ)
157143nnne0d 10942 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) ≠ 0)
158 dvdsmulcr 14849 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ ℤ ∧ (𝑘 · 𝑃) ∈ ℤ ∧ ((𝑃𝑛) ∈ ℤ ∧ (𝑃𝑛) ≠ 0)) → ((𝑥 · (𝑃𝑛)) ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ↔ 𝑥 ∥ (𝑘 · 𝑃)))
159152, 155, 156, 157, 158syl112anc 1322 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 · (𝑃𝑛)) ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ↔ 𝑥 ∥ (𝑘 · 𝑃)))
160151, 159bitrd 267 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ↔ 𝑥 ∥ (𝑘 · 𝑃)))
161 dvdsmulcr 14849 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑥 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ ((𝑃𝑛) ∈ ℤ ∧ (𝑃𝑛) ≠ 0)) → ((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛)) ↔ 𝑥𝑘))
162152, 153, 156, 157, 161syl112anc 1322 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛)) ↔ 𝑥𝑘))
163162notbid 307 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛)) ↔ ¬ 𝑥𝑘))
164160, 163anbi12d 743 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛))) ↔ (𝑥 ∥ (𝑘 · 𝑃) ∧ ¬ 𝑥𝑘)))
165146breq1d 4593 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃↑(𝑛 + 1)) ∥ (𝑥 · (𝑃𝑛)) ↔ (𝑃 · (𝑃𝑛)) ∥ (𝑥 · (𝑃𝑛))))
166 dvdsmulcr 14849 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ ((𝑃𝑛) ∈ ℤ ∧ (𝑃𝑛) ≠ 0)) → ((𝑃 · (𝑃𝑛)) ∥ (𝑥 · (𝑃𝑛)) ↔ 𝑃𝑥))
167154, 152, 156, 157, 166syl112anc 1322 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃 · (𝑃𝑛)) ∥ (𝑥 · (𝑃𝑛)) ↔ 𝑃𝑥))
168165, 167bitrd 267 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃↑(𝑛 + 1)) ∥ (𝑥 · (𝑃𝑛)) ↔ 𝑃𝑥))
169137, 164, 1683imtr4d 282 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ ∧ 𝑥 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ (𝑥 · (𝑃𝑛))))
170169an32s 842 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → (((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ (𝑥 · (𝑃𝑛))))
171 breq1 4586 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 · (𝑃𝑛)) = 𝐷 → ((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1)))))
172 breq1 4586 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 · (𝑃𝑛)) = 𝐷 → ((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛)) ↔ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
173172notbid 307 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 · (𝑃𝑛)) = 𝐷 → (¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛)) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
174171, 173anbi12d 743 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 · (𝑃𝑛)) = 𝐷 → (((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛))) ↔ (𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛)))))
175 breq2 4587 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 · (𝑃𝑛)) = 𝐷 → ((𝑃↑(𝑛 + 1)) ∥ (𝑥 · (𝑃𝑛)) ↔ (𝑃↑(𝑛 + 1)) ∥ 𝐷))
176174, 175imbi12d 333 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 · (𝑃𝑛)) = 𝐷 → ((((𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ (𝑥 · (𝑃𝑛)) ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ (𝑥 · (𝑃𝑛))) ↔ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
177170, 176syl5ibcom 234 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) ∧ 𝑥 ∈ ℤ) → ((𝑥 · (𝑃𝑛)) = 𝐷 → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
178177rexlimdva 3013 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (∃𝑥 ∈ ℤ (𝑥 · (𝑃𝑛)) = 𝐷 → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
179178adantlr 747 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (∃𝑥 ∈ ℤ (𝑥 · (𝑃𝑛)) = 𝐷 → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
180136, 179sylbid 229 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑃𝑛) ∥ 𝐷 → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
181180com23 84 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → ((𝑃𝑛) ∥ 𝐷 → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
182181a2d 29 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃𝑛) ∥ 𝐷) → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
18365ad2antll 761 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑘 ∈ ℂ)
184119zcnd 11359 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑃 ∈ ℂ)
185133zcnd 11359 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) ∈ ℂ)
186183, 184, 185mulassd 9942 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑃) · (𝑃𝑛)) = (𝑘 · (𝑃 · (𝑃𝑛))))
187184, 185mulcomd 9940 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃 · (𝑃𝑛)) = ((𝑃𝑛) · 𝑃))
188184, 131expp1d 12871 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃↑(𝑛 + 1)) = ((𝑃𝑛) · 𝑃))
189187, 188eqtr4d 2647 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃 · (𝑃𝑛)) = (𝑃↑(𝑛 + 1)))
190189oveq2d 6565 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝑃 · (𝑃𝑛))) = (𝑘 · (𝑃↑(𝑛 + 1))))
191186, 190eqtrd 2644 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑃) · (𝑃𝑛)) = (𝑘 · (𝑃↑(𝑛 + 1))))
192191breq2d 4595 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ↔ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1)))))
193 nnm1nn0 11211 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → (𝑛 − 1) ∈ ℕ0)
194193ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑛 − 1) ∈ ℕ0)
195 zexpcl 12737 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ ℤ ∧ (𝑛 − 1) ∈ ℕ0) → (𝑃↑(𝑛 − 1)) ∈ ℤ)
196119, 194, 195syl2anc 691 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃↑(𝑛 − 1)) ∈ ℤ)
197196zcnd 11359 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃↑(𝑛 − 1)) ∈ ℂ)
198183, 184, 197mulassd 9942 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1))) = (𝑘 · (𝑃 · (𝑃↑(𝑛 − 1)))))
199184, 197mulcomd 9940 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃 · (𝑃↑(𝑛 − 1))) = ((𝑃↑(𝑛 − 1)) · 𝑃))
200 simpll 786 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑛 ∈ ℕ)
201 expm1t 12750 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ ℂ ∧ 𝑛 ∈ ℕ) → (𝑃𝑛) = ((𝑃↑(𝑛 − 1)) · 𝑃))
202184, 200, 201syl2anc 691 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃𝑛) = ((𝑃↑(𝑛 − 1)) · 𝑃))
203199, 202eqtr4d 2647 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃 · (𝑃↑(𝑛 − 1))) = (𝑃𝑛))
204203oveq2d 6565 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝑃 · (𝑃↑(𝑛 − 1)))) = (𝑘 · (𝑃𝑛)))
205198, 204eqtrd 2644 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1))) = (𝑘 · (𝑃𝑛)))
206205breq2d 4595 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
207206notbid 307 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1))) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
208192, 207anbi12d 743 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))) ↔ (𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛)))))
209208imbi1d 330 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (((𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃𝑛) ∥ 𝐷)))
210 nncn 10905 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
211210ad2antrr 758 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → 𝑛 ∈ ℂ)
212 ax-1cn 9873 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℂ
213 pncan 10166 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑛 + 1) − 1) = 𝑛)
214211, 212, 213sylancl 693 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝑛 + 1) − 1) = 𝑛)
215214oveq2d 6565 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑃↑((𝑛 + 1) − 1)) = (𝑃𝑛))
216215oveq2d 6565 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝑘 · (𝑃↑((𝑛 + 1) − 1))) = (𝑘 · (𝑃𝑛)))
217216breq2d 4595 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1))) ↔ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
218217notbid 307 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1))) ↔ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))))
219218anbi2d 736 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) ↔ (𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛)))))
220219imbi1d 330 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷) ↔ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃𝑛))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
221182, 209, 2203imtr4d 282 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (((𝐷 ∥ ((𝑘 · 𝑃) · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ ((𝑘 · 𝑃) · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
222129, 221syld 46 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑘 ∈ ℤ)) → (∀𝑥 ∈ ℤ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
223222anassrs 678 . . . . . . . . . . 11 ((((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ ℤ) → (∀𝑥 ∈ ℤ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
224223ralrimdva 2952 . . . . . . . . . 10 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ 𝑃 ∈ ℙ) → (∀𝑥 ∈ ℤ ((𝐷 ∥ (𝑥 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑥 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
225117, 224syl5bi 231 . . . . . . . . 9 (((𝑛 ∈ ℕ ∧ 𝐷 ∈ ℤ) ∧ 𝑃 ∈ ℙ) → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷)))
226225expl 646 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷))))
227226a2d 29 . . . . . . 7 (𝑛 ∈ ℕ → (((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑛)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑛 − 1)))) → (𝑃𝑛) ∥ 𝐷)) → ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃↑(𝑛 + 1))) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑((𝑛 + 1) − 1)))) → (𝑃↑(𝑛 + 1)) ∥ 𝐷))))
22814, 27, 40, 53, 109, 227nnind 10915 . . . . . 6 (𝑁 ∈ ℕ → ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷)))
229228com12 32 . . . . 5 ((𝐷 ∈ ℤ ∧ 𝑃 ∈ ℙ) → (𝑁 ∈ ℕ → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷)))
230229impr 647 . . . 4 ((𝐷 ∈ ℤ ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ)) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷))
231230adantll 746 . . 3 (((𝐾 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ)) → ∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷))
232 oveq1 6556 . . . . . . 7 (𝑘 = 𝐾 → (𝑘 · (𝑃𝑁)) = (𝐾 · (𝑃𝑁)))
233232breq2d 4595 . . . . . 6 (𝑘 = 𝐾 → (𝐷 ∥ (𝑘 · (𝑃𝑁)) ↔ 𝐷 ∥ (𝐾 · (𝑃𝑁))))
234 oveq1 6556 . . . . . . . 8 (𝑘 = 𝐾 → (𝑘 · (𝑃↑(𝑁 − 1))) = (𝐾 · (𝑃↑(𝑁 − 1))))
235234breq2d 4595 . . . . . . 7 (𝑘 = 𝐾 → (𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1))) ↔ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1)))))
236235notbid 307 . . . . . 6 (𝑘 = 𝐾 → (¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1))) ↔ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1)))))
237233, 236anbi12d 743 . . . . 5 (𝑘 = 𝐾 → ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) ↔ (𝐷 ∥ (𝐾 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1))))))
238237imbi1d 330 . . . 4 (𝑘 = 𝐾 → (((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷) ↔ ((𝐷 ∥ (𝐾 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷)))
239238rspcv 3278 . . 3 (𝐾 ∈ ℤ → (∀𝑘 ∈ ℤ ((𝐷 ∥ (𝑘 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝑘 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷) → ((𝐷 ∥ (𝐾 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷)))
2401, 231, 239sylc 63 . 2 (((𝐾 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ)) → ((𝐷 ∥ (𝐾 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1)))) → (𝑃𝑁) ∥ 𝐷))
2412403impia 1253 1 (((𝐾 ∈ ℤ ∧ 𝐷 ∈ ℤ) ∧ (𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) ∧ (𝐷 ∥ (𝐾 · (𝑃𝑁)) ∧ ¬ 𝐷 ∥ (𝐾 · (𝑃↑(𝑁 − 1))))) → (𝑃𝑁) ∥ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897   class class class wbr 4583  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  cn 10897  0cn0 11169  cz 11254  cexp 12722  cdvds 14821   gcd cgcd 15054  cprime 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224
This theorem is referenced by:  pockthlem  15447
  Copyright terms: Public domain W3C validator