MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquadlem3 Structured version   Visualization version   GIF version

Theorem lgsquadlem3 24907
Description: Lemma for lgsquad 24908. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgsquad.4 𝑀 = ((𝑃 − 1) / 2)
lgsquad.5 𝑁 = ((𝑄 − 1) / 2)
lgsquad.6 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}
Assertion
Ref Expression
lgsquadlem3 (𝜑 → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(𝑀 · 𝑁)))
Distinct variable groups:   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑀   𝑥,𝑁,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆   𝑥,𝑀   𝑦,𝑆

Proof of Theorem lgsquadlem3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgseisen.2 . . . . 5 (𝜑𝑄 ∈ (ℙ ∖ {2}))
2 lgseisen.1 . . . . 5 (𝜑𝑃 ∈ (ℙ ∖ {2}))
3 lgseisen.3 . . . . . 6 (𝜑𝑃𝑄)
43necomd 2837 . . . . 5 (𝜑𝑄𝑃)
5 lgsquad.5 . . . . 5 𝑁 = ((𝑄 − 1) / 2)
6 lgsquad.4 . . . . 5 𝑀 = ((𝑃 − 1) / 2)
7 eleq1 2676 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 ∈ (1...𝑀) ↔ 𝑧 ∈ (1...𝑀)))
8 eleq1 2676 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑦 ∈ (1...𝑁) ↔ 𝑤 ∈ (1...𝑁)))
97, 8bi2anan9 913 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (𝑧 ∈ (1...𝑀) ∧ 𝑤 ∈ (1...𝑁))))
10 ancom 465 . . . . . . . . 9 ((𝑧 ∈ (1...𝑀) ∧ 𝑤 ∈ (1...𝑁)) ↔ (𝑤 ∈ (1...𝑁) ∧ 𝑧 ∈ (1...𝑀)))
119, 10syl6bb 275 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (𝑤 ∈ (1...𝑁) ∧ 𝑧 ∈ (1...𝑀))))
12 oveq1 6556 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 · 𝑄) = (𝑧 · 𝑄))
13 oveq1 6556 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑦 · 𝑃) = (𝑤 · 𝑃))
1412, 13breqan12d 4599 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥 · 𝑄) < (𝑦 · 𝑃) ↔ (𝑧 · 𝑄) < (𝑤 · 𝑃)))
1511, 14anbi12d 743 . . . . . . 7 ((𝑥 = 𝑧𝑦 = 𝑤) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ↔ ((𝑤 ∈ (1...𝑁) ∧ 𝑧 ∈ (1...𝑀)) ∧ (𝑧 · 𝑄) < (𝑤 · 𝑃))))
1615ancoms 468 . . . . . 6 ((𝑦 = 𝑤𝑥 = 𝑧) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ↔ ((𝑤 ∈ (1...𝑁) ∧ 𝑧 ∈ (1...𝑀)) ∧ (𝑧 · 𝑄) < (𝑤 · 𝑃))))
1716cbvopabv 4654 . . . . 5 {⟨𝑦, 𝑥⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} = {⟨𝑤, 𝑧⟩ ∣ ((𝑤 ∈ (1...𝑁) ∧ 𝑧 ∈ (1...𝑀)) ∧ (𝑧 · 𝑄) < (𝑤 · 𝑃))}
181, 2, 4, 5, 6, 17lgsquadlem2 24906 . . . 4 (𝜑 → (𝑃 /L 𝑄) = (-1↑(#‘{⟨𝑦, 𝑥⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})))
19 relopab 5169 . . . . . . . 8 Rel {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}
20 fzfid 12634 . . . . . . . . . 10 (𝜑 → (1...𝑀) ∈ Fin)
21 fzfid 12634 . . . . . . . . . 10 (𝜑 → (1...𝑁) ∈ Fin)
22 xpfi 8116 . . . . . . . . . 10 (((1...𝑀) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((1...𝑀) × (1...𝑁)) ∈ Fin)
2320, 21, 22syl2anc 691 . . . . . . . . 9 (𝜑 → ((1...𝑀) × (1...𝑁)) ∈ Fin)
24 opabssxp 5116 . . . . . . . . 9 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ⊆ ((1...𝑀) × (1...𝑁))
25 ssfi 8065 . . . . . . . . 9 ((((1...𝑀) × (1...𝑁)) ∈ Fin ∧ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ⊆ ((1...𝑀) × (1...𝑁))) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin)
2623, 24, 25sylancl 693 . . . . . . . 8 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin)
27 cnven 7918 . . . . . . . 8 ((Rel {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∧ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ≈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})
2819, 26, 27sylancr 694 . . . . . . 7 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ≈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})
29 cnvopab 5452 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} = {⟨𝑦, 𝑥⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}
3028, 29syl6breq 4624 . . . . . 6 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ≈ {⟨𝑦, 𝑥⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})
31 hasheni 12998 . . . . . 6 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ≈ {⟨𝑦, 𝑥⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} → (#‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) = (#‘{⟨𝑦, 𝑥⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}))
3230, 31syl 17 . . . . 5 (𝜑 → (#‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) = (#‘{⟨𝑦, 𝑥⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}))
3332oveq2d 6565 . . . 4 (𝜑 → (-1↑(#‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})) = (-1↑(#‘{⟨𝑦, 𝑥⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})))
3418, 33eqtr4d 2647 . . 3 (𝜑 → (𝑃 /L 𝑄) = (-1↑(#‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})))
35 lgsquad.6 . . . 4 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}
362, 1, 3, 6, 5, 35lgsquadlem2 24906 . . 3 (𝜑 → (𝑄 /L 𝑃) = (-1↑(#‘𝑆)))
3734, 36oveq12d 6567 . 2 (𝜑 → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = ((-1↑(#‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})) · (-1↑(#‘𝑆))))
38 neg1cn 11001 . . . 4 -1 ∈ ℂ
3938a1i 11 . . 3 (𝜑 → -1 ∈ ℂ)
40 opabssxp 5116 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⊆ ((1...𝑀) × (1...𝑁))
4135, 40eqsstri 3598 . . . . 5 𝑆 ⊆ ((1...𝑀) × (1...𝑁))
42 ssfi 8065 . . . . 5 ((((1...𝑀) × (1...𝑁)) ∈ Fin ∧ 𝑆 ⊆ ((1...𝑀) × (1...𝑁))) → 𝑆 ∈ Fin)
4323, 41, 42sylancl 693 . . . 4 (𝜑𝑆 ∈ Fin)
44 hashcl 13009 . . . 4 (𝑆 ∈ Fin → (#‘𝑆) ∈ ℕ0)
4543, 44syl 17 . . 3 (𝜑 → (#‘𝑆) ∈ ℕ0)
46 hashcl 13009 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin → (#‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) ∈ ℕ0)
4726, 46syl 17 . . 3 (𝜑 → (#‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) ∈ ℕ0)
4839, 45, 47expaddd 12872 . 2 (𝜑 → (-1↑((#‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (#‘𝑆))) = ((-1↑(#‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})) · (-1↑(#‘𝑆))))
491eldifad 3552 . . . . . . . . . . . . . . . . 17 (𝜑𝑄 ∈ ℙ)
5049adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈ ℙ)
51 prmnn 15226 . . . . . . . . . . . . . . . 16 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
5250, 51syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈ ℕ)
53 oddprm 15353 . . . . . . . . . . . . . . . . . . . . . 22 (𝑄 ∈ (ℙ ∖ {2}) → ((𝑄 − 1) / 2) ∈ ℕ)
541, 53syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝑄 − 1) / 2) ∈ ℕ)
555, 54syl5eqel 2692 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℕ)
5655adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 ∈ ℕ)
5756nnzd 11357 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 ∈ ℤ)
58 prmz 15227 . . . . . . . . . . . . . . . . . . . 20 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
5950, 58syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈ ℤ)
60 peano2zm 11297 . . . . . . . . . . . . . . . . . . 19 (𝑄 ∈ ℤ → (𝑄 − 1) ∈ ℤ)
6159, 60syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈ ℤ)
6256nnred 10912 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 ∈ ℝ)
6361zred 11358 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈ ℝ)
64 prmuz2 15246 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑄 ∈ ℙ → 𝑄 ∈ (ℤ‘2))
6550, 64syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈ (ℤ‘2))
66 uz2m1nn 11639 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑄 ∈ (ℤ‘2) → (𝑄 − 1) ∈ ℕ)
6765, 66syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈ ℕ)
6867nnrpd 11746 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈ ℝ+)
69 rphalflt 11736 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 − 1) ∈ ℝ+ → ((𝑄 − 1) / 2) < (𝑄 − 1))
7068, 69syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑄 − 1) / 2) < (𝑄 − 1))
715, 70syl5eqbr 4618 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 < (𝑄 − 1))
7262, 63, 71ltled 10064 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 ≤ (𝑄 − 1))
73 eluz2 11569 . . . . . . . . . . . . . . . . . 18 ((𝑄 − 1) ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑄 − 1) ∈ ℤ ∧ 𝑁 ≤ (𝑄 − 1)))
7457, 61, 72, 73syl3anbrc 1239 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈ (ℤ𝑁))
75 fzss2 12252 . . . . . . . . . . . . . . . . 17 ((𝑄 − 1) ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...(𝑄 − 1)))
7674, 75syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (1...𝑁) ⊆ (1...(𝑄 − 1)))
77 simprr 792 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ (1...𝑁))
7876, 77sseldd 3569 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ (1...(𝑄 − 1)))
79 fzm1ndvds 14882 . . . . . . . . . . . . . . 15 ((𝑄 ∈ ℕ ∧ 𝑦 ∈ (1...(𝑄 − 1))) → ¬ 𝑄𝑦)
8052, 78, 79syl2anc 691 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ¬ 𝑄𝑦)
814adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄𝑃)
822eldifad 3552 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℙ)
8382adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℙ)
84 prmrp 15262 . . . . . . . . . . . . . . . . 17 ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((𝑄 gcd 𝑃) = 1 ↔ 𝑄𝑃))
8550, 83, 84syl2anc 691 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑄 gcd 𝑃) = 1 ↔ 𝑄𝑃))
8681, 85mpbird 246 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 gcd 𝑃) = 1)
87 prmz 15227 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
8883, 87syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℤ)
89 elfzelz 12213 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℤ)
9089ad2antll 761 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ ℤ)
91 coprmdvds 15204 . . . . . . . . . . . . . . . 16 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑄 ∥ (𝑃 · 𝑦) ∧ (𝑄 gcd 𝑃) = 1) → 𝑄𝑦))
9259, 88, 90, 91syl3anc 1318 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑄 ∥ (𝑃 · 𝑦) ∧ (𝑄 gcd 𝑃) = 1) → 𝑄𝑦))
9386, 92mpan2d 706 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 ∥ (𝑃 · 𝑦) → 𝑄𝑦))
9480, 93mtod 188 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ¬ 𝑄 ∥ (𝑃 · 𝑦))
95 prmnn 15226 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
9683, 95syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℕ)
9796nncnd 10913 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℂ)
98 elfznn 12241 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℕ)
9998ad2antll 761 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ ℕ)
10099nncnd 10913 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ ℂ)
10197, 100mulcomd 9940 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑃 · 𝑦) = (𝑦 · 𝑃))
102101breq2d 4595 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 ∥ (𝑃 · 𝑦) ↔ 𝑄 ∥ (𝑦 · 𝑃)))
10394, 102mtbid 313 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ¬ 𝑄 ∥ (𝑦 · 𝑃))
104 elfzelz 12213 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℤ)
105104ad2antrl 760 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑥 ∈ ℤ)
106 dvdsmul2 14842 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑄 ∈ ℤ) → 𝑄 ∥ (𝑥 · 𝑄))
107105, 59, 106syl2anc 691 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∥ (𝑥 · 𝑄))
108 breq2 4587 . . . . . . . . . . . . . 14 ((𝑥 · 𝑄) = (𝑦 · 𝑃) → (𝑄 ∥ (𝑥 · 𝑄) ↔ 𝑄 ∥ (𝑦 · 𝑃)))
109107, 108syl5ibcom 234 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑥 · 𝑄) = (𝑦 · 𝑃) → 𝑄 ∥ (𝑦 · 𝑃)))
110109necon3bd 2796 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (¬ 𝑄 ∥ (𝑦 · 𝑃) → (𝑥 · 𝑄) ≠ (𝑦 · 𝑃)))
111103, 110mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ≠ (𝑦 · 𝑃))
112 elfznn 12241 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ)
113112ad2antrl 760 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑥 ∈ ℕ)
114113, 52nnmulcld 10945 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ∈ ℕ)
115114nnred 10912 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ∈ ℝ)
11699, 96nnmulcld 10945 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑦 · 𝑃) ∈ ℕ)
117116nnred 10912 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑦 · 𝑃) ∈ ℝ)
118115, 117lttri2d 10055 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑥 · 𝑄) ≠ (𝑦 · 𝑃) ↔ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
119111, 118mpbid 221 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))
120119ex 449 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) → ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
121120pm4.71rd 665 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)))))
122 ancom 465 . . . . . . . 8 ((((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) ↔ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
123121, 122syl6rbb 276 . . . . . . 7 (𝜑 → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))))
124123opabbidv 4648 . . . . . 6 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))})
125 unopab 4660 . . . . . . 7 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}) = {⟨𝑥, 𝑦⟩ ∣ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∨ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))}
12635uneq2i 3726 . . . . . . 7 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆) = ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))})
127 andi 907 . . . . . . . 8 (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∨ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
128127opabbii 4649 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = {⟨𝑥, 𝑦⟩ ∣ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∨ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))}
129125, 126, 1283eqtr4i 2642 . . . . . 6 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))}
130 df-xp 5044 . . . . . 6 ((1...𝑀) × (1...𝑁)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))}
131124, 129, 1303eqtr4g 2669 . . . . 5 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆) = ((1...𝑀) × (1...𝑁)))
132131fveq2d 6107 . . . 4 (𝜑 → (#‘({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆)) = (#‘((1...𝑀) × (1...𝑁))))
133 inopab 5174 . . . . . . 7 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}) = {⟨𝑥, 𝑦⟩ ∣ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∧ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))}
13435ineq2i 3773 . . . . . . 7 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ 𝑆) = ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))})
135 anandi 867 . . . . . . . 8 (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∧ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
136135opabbii 4649 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = {⟨𝑥, 𝑦⟩ ∣ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∧ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))}
137133, 134, 1363eqtr4i 2642 . . . . . 6 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))}
138 ltnsym2 10015 . . . . . . . . . . . 12 (((𝑥 · 𝑄) ∈ ℝ ∧ (𝑦 · 𝑃) ∈ ℝ) → ¬ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))
139115, 117, 138syl2anc 691 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ¬ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))
140139ex 449 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) → ¬ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
141 imnan 437 . . . . . . . . . 10 (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) → ¬ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ ¬ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
142140, 141sylib 207 . . . . . . . . 9 (𝜑 → ¬ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
143142nexdv 1851 . . . . . . . 8 (𝜑 → ¬ ∃𝑦((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
144143nexdv 1851 . . . . . . 7 (𝜑 → ¬ ∃𝑥𝑦((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
145 opabn0 4931 . . . . . . . 8 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} ≠ ∅ ↔ ∃𝑥𝑦((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
146145necon1bbii 2831 . . . . . . 7 (¬ ∃𝑥𝑦((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = ∅)
147144, 146sylib 207 . . . . . 6 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = ∅)
148137, 147syl5eq 2656 . . . . 5 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ 𝑆) = ∅)
149 hashun 13032 . . . . 5 (({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin ∧ 𝑆 ∈ Fin ∧ ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ 𝑆) = ∅) → (#‘({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆)) = ((#‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (#‘𝑆)))
15026, 43, 148, 149syl3anc 1318 . . . 4 (𝜑 → (#‘({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆)) = ((#‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (#‘𝑆)))
151 hashxp 13081 . . . . . 6 (((1...𝑀) ∈ Fin ∧ (1...𝑁) ∈ Fin) → (#‘((1...𝑀) × (1...𝑁))) = ((#‘(1...𝑀)) · (#‘(1...𝑁))))
15220, 21, 151syl2anc 691 . . . . 5 (𝜑 → (#‘((1...𝑀) × (1...𝑁))) = ((#‘(1...𝑀)) · (#‘(1...𝑁))))
153 oddprm 15353 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
1542, 153syl 17 . . . . . . . . 9 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
1556, 154syl5eqel 2692 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
156155nnnn0d 11228 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
157 hashfz1 12996 . . . . . . 7 (𝑀 ∈ ℕ0 → (#‘(1...𝑀)) = 𝑀)
158156, 157syl 17 . . . . . 6 (𝜑 → (#‘(1...𝑀)) = 𝑀)
15955nnnn0d 11228 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
160 hashfz1 12996 . . . . . . 7 (𝑁 ∈ ℕ0 → (#‘(1...𝑁)) = 𝑁)
161159, 160syl 17 . . . . . 6 (𝜑 → (#‘(1...𝑁)) = 𝑁)
162158, 161oveq12d 6567 . . . . 5 (𝜑 → ((#‘(1...𝑀)) · (#‘(1...𝑁))) = (𝑀 · 𝑁))
163152, 162eqtrd 2644 . . . 4 (𝜑 → (#‘((1...𝑀) × (1...𝑁))) = (𝑀 · 𝑁))
164132, 150, 1633eqtr3d 2652 . . 3 (𝜑 → ((#‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (#‘𝑆)) = (𝑀 · 𝑁))
165164oveq2d 6565 . 2 (𝜑 → (-1↑((#‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (#‘𝑆))) = (-1↑(𝑀 · 𝑁)))
16637, 48, 1653eqtr2d 2650 1 (𝜑 → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(𝑀 · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125   class class class wbr 4583  {copab 4642   × cxp 5036  ccnv 5037  Rel wrel 5043  cfv 5804  (class class class)co 6549  cen 7838  Fincfn 7841  cc 9813  cr 9814  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145  -cneg 10146   / cdiv 10563  cn 10897  2c2 10947  0cn0 11169  cz 11254  cuz 11563  +crp 11708  ...cfz 12197  cexp 12722  #chash 12979  cdvds 14821   gcd cgcd 15054  cprime 15223   /L clgs 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-ec 7631  df-qs 7635  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-gcd 15055  df-prm 15224  df-phi 15309  df-pc 15380  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-0g 15925  df-gsum 15926  df-imas 15991  df-qus 15992  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-nsg 17415  df-eqg 17416  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-field 18573  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-2idl 19053  df-nzr 19079  df-rlreg 19104  df-domn 19105  df-idom 19106  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-zn 19674  df-lgs 24820
This theorem is referenced by:  lgsquad  24908
  Copyright terms: Public domain W3C validator