MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geolim3 Structured version   Visualization version   GIF version

Theorem geolim3 23898
Description: Geometric series convergence with arbitrary shift, radix, and multiplicative constant. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
geolim3.a (𝜑𝐴 ∈ ℤ)
geolim3.b1 (𝜑𝐵 ∈ ℂ)
geolim3.b2 (𝜑 → (abs‘𝐵) < 1)
geolim3.c (𝜑𝐶 ∈ ℂ)
geolim3.f 𝐹 = (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))
Assertion
Ref Expression
geolim3 (𝜑 → seq𝐴( + , 𝐹) ⇝ (𝐶 / (1 − 𝐵)))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem geolim3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 geolim3.f . . 3 𝐹 = (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))
2 seqeq3 12668 . . 3 (𝐹 = (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) → seq𝐴( + , 𝐹) = seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))))
31, 2ax-mp 5 . 2 seq𝐴( + , 𝐹) = seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))))
4 nn0uz 11598 . . . . 5 0 = (ℤ‘0)
5 0zd 11266 . . . . 5 (𝜑 → 0 ∈ ℤ)
6 geolim3.c . . . . 5 (𝜑𝐶 ∈ ℂ)
7 geolim3.b1 . . . . . 6 (𝜑𝐵 ∈ ℂ)
8 geolim3.b2 . . . . . 6 (𝜑 → (abs‘𝐵) < 1)
9 oveq2 6557 . . . . . . . 8 (𝑘 = 𝑎 → (𝐵𝑘) = (𝐵𝑎))
10 eqid 2610 . . . . . . . 8 (𝑘 ∈ ℕ0 ↦ (𝐵𝑘)) = (𝑘 ∈ ℕ0 ↦ (𝐵𝑘))
11 ovex 6577 . . . . . . . 8 (𝐵𝑎) ∈ V
129, 10, 11fvmpt 6191 . . . . . . 7 (𝑎 ∈ ℕ0 → ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎) = (𝐵𝑎))
1312adantl 481 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎) = (𝐵𝑎))
147, 8, 13geolim 14440 . . . . 5 (𝜑 → seq0( + , (𝑘 ∈ ℕ0 ↦ (𝐵𝑘))) ⇝ (1 / (1 − 𝐵)))
15 expcl 12740 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 𝑎 ∈ ℕ0) → (𝐵𝑎) ∈ ℂ)
167, 15sylan 487 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → (𝐵𝑎) ∈ ℂ)
1713, 16eqeltrd 2688 . . . . 5 ((𝜑𝑎 ∈ ℕ0) → ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎) ∈ ℂ)
18 geolim3.a . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
1918zcnd 11359 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
20 nn0cn 11179 . . . . . . 7 (𝑎 ∈ ℕ0𝑎 ∈ ℂ)
21 fvex 6113 . . . . . . . . 9 (ℤ𝐴) ∈ V
2221mptex 6390 . . . . . . . 8 (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) ∈ V
2322shftval4 13665 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ) → (((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)‘𝑎) = ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))‘(𝐴 + 𝑎)))
2419, 20, 23syl2an 493 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → (((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)‘𝑎) = ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))‘(𝐴 + 𝑎)))
25 uzid 11578 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ (ℤ𝐴))
2618, 25syl 17 . . . . . . . 8 (𝜑𝐴 ∈ (ℤ𝐴))
27 uzaddcl 11620 . . . . . . . 8 ((𝐴 ∈ (ℤ𝐴) ∧ 𝑎 ∈ ℕ0) → (𝐴 + 𝑎) ∈ (ℤ𝐴))
2826, 27sylan 487 . . . . . . 7 ((𝜑𝑎 ∈ ℕ0) → (𝐴 + 𝑎) ∈ (ℤ𝐴))
29 oveq1 6556 . . . . . . . . . 10 (𝑘 = (𝐴 + 𝑎) → (𝑘𝐴) = ((𝐴 + 𝑎) − 𝐴))
3029oveq2d 6565 . . . . . . . . 9 (𝑘 = (𝐴 + 𝑎) → (𝐵↑(𝑘𝐴)) = (𝐵↑((𝐴 + 𝑎) − 𝐴)))
3130oveq2d 6565 . . . . . . . 8 (𝑘 = (𝐴 + 𝑎) → (𝐶 · (𝐵↑(𝑘𝐴))) = (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))))
32 eqid 2610 . . . . . . . 8 (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) = (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))
33 ovex 6577 . . . . . . . 8 (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))) ∈ V
3431, 32, 33fvmpt 6191 . . . . . . 7 ((𝐴 + 𝑎) ∈ (ℤ𝐴) → ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))‘(𝐴 + 𝑎)) = (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))))
3528, 34syl 17 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))‘(𝐴 + 𝑎)) = (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))))
36 pncan2 10167 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑎 ∈ ℂ) → ((𝐴 + 𝑎) − 𝐴) = 𝑎)
3719, 20, 36syl2an 493 . . . . . . . . 9 ((𝜑𝑎 ∈ ℕ0) → ((𝐴 + 𝑎) − 𝐴) = 𝑎)
3837oveq2d 6565 . . . . . . . 8 ((𝜑𝑎 ∈ ℕ0) → (𝐵↑((𝐴 + 𝑎) − 𝐴)) = (𝐵𝑎))
3938, 13eqtr4d 2647 . . . . . . 7 ((𝜑𝑎 ∈ ℕ0) → (𝐵↑((𝐴 + 𝑎) − 𝐴)) = ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎))
4039oveq2d 6565 . . . . . 6 ((𝜑𝑎 ∈ ℕ0) → (𝐶 · (𝐵↑((𝐴 + 𝑎) − 𝐴))) = (𝐶 · ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎)))
4124, 35, 403eqtrd 2648 . . . . 5 ((𝜑𝑎 ∈ ℕ0) → (((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)‘𝑎) = (𝐶 · ((𝑘 ∈ ℕ0 ↦ (𝐵𝑘))‘𝑎)))
424, 5, 6, 14, 17, 41isermulc2 14236 . . . 4 (𝜑 → seq0( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) ⇝ (𝐶 · (1 / (1 − 𝐵))))
4319negidd 10261 . . . . 5 (𝜑 → (𝐴 + -𝐴) = 0)
4443seqeq1d 12669 . . . 4 (𝜑 → seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) = seq0( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)))
45 ax-1cn 9873 . . . . . 6 1 ∈ ℂ
46 subcl 10159 . . . . . 6 ((1 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 − 𝐵) ∈ ℂ)
4745, 7, 46sylancr 694 . . . . 5 (𝜑 → (1 − 𝐵) ∈ ℂ)
48 abs1 13885 . . . . . . . . 9 (abs‘1) = 1
4948a1i 11 . . . . . . . 8 (𝜑 → (abs‘1) = 1)
507abscld 14023 . . . . . . . . 9 (𝜑 → (abs‘𝐵) ∈ ℝ)
5150, 8gtned 10051 . . . . . . . 8 (𝜑 → 1 ≠ (abs‘𝐵))
5249, 51eqnetrd 2849 . . . . . . 7 (𝜑 → (abs‘1) ≠ (abs‘𝐵))
53 fveq2 6103 . . . . . . . 8 (1 = 𝐵 → (abs‘1) = (abs‘𝐵))
5453necon3i 2814 . . . . . . 7 ((abs‘1) ≠ (abs‘𝐵) → 1 ≠ 𝐵)
5552, 54syl 17 . . . . . 6 (𝜑 → 1 ≠ 𝐵)
56 subeq0 10186 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 − 𝐵) = 0 ↔ 1 = 𝐵))
5745, 7, 56sylancr 694 . . . . . . 7 (𝜑 → ((1 − 𝐵) = 0 ↔ 1 = 𝐵))
5857necon3bid 2826 . . . . . 6 (𝜑 → ((1 − 𝐵) ≠ 0 ↔ 1 ≠ 𝐵))
5955, 58mpbird 246 . . . . 5 (𝜑 → (1 − 𝐵) ≠ 0)
606, 47, 59divrecd 10683 . . . 4 (𝜑 → (𝐶 / (1 − 𝐵)) = (𝐶 · (1 / (1 − 𝐵))))
6142, 44, 603brtr4d 4615 . . 3 (𝜑 → seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) ⇝ (𝐶 / (1 − 𝐵)))
6218znegcld 11360 . . . 4 (𝜑 → -𝐴 ∈ ℤ)
6322isershft 14242 . . . 4 ((𝐴 ∈ ℤ ∧ -𝐴 ∈ ℤ) → (seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))) ⇝ (𝐶 / (1 − 𝐵)) ↔ seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) ⇝ (𝐶 / (1 − 𝐵))))
6418, 62, 63syl2anc 691 . . 3 (𝜑 → (seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))) ⇝ (𝐶 / (1 − 𝐵)) ↔ seq(𝐴 + -𝐴)( + , ((𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴)))) shift -𝐴)) ⇝ (𝐶 / (1 − 𝐵))))
6561, 64mpbird 246 . 2 (𝜑 → seq𝐴( + , (𝑘 ∈ (ℤ𝐴) ↦ (𝐶 · (𝐵↑(𝑘𝐴))))) ⇝ (𝐶 / (1 − 𝐵)))
663, 65syl5eqbr 4618 1 (𝜑 → seq𝐴( + , 𝐹) ⇝ (𝐶 / (1 − 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cmpt 4643  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cmin 10145  -cneg 10146   / cdiv 10563  0cn0 11169  cz 11254  cuz 11563  seqcseq 12663  cexp 12722   shift cshi 13654  abscabs 13822  cli 14063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265
This theorem is referenced by:  aaliou3lem3  23903
  Copyright terms: Public domain W3C validator