Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circum Structured version   Visualization version   GIF version

Theorem circum 30822
Description: The circumference of a circle of radius 𝑅, defined as the limit as 𝑛 ⇝ +∞ of the perimeter of an inscribed n-sided isogons, is ((2 · π) · 𝑅). (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.)
Hypotheses
Ref Expression
circum.1 𝐴 = ((2 · π) / 𝑛)
circum.2 𝑃 = (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2)))))
circum.3 𝑅 ∈ ℝ
Assertion
Ref Expression
circum 𝑃 ⇝ ((2 · π) · 𝑅)
Distinct variable group:   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑃(𝑛)

Proof of Theorem circum
Dummy variables 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11599 . . . 4 ℕ = (ℤ‘1)
2 1zzd 11285 . . . 4 (⊤ → 1 ∈ ℤ)
3 pirp 24017 . . . . . . . . . 10 π ∈ ℝ+
4 nnrp 11718 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
5 rpdivcl 11732 . . . . . . . . . 10 ((π ∈ ℝ+𝑛 ∈ ℝ+) → (π / 𝑛) ∈ ℝ+)
63, 4, 5sylancr 694 . . . . . . . . 9 (𝑛 ∈ ℕ → (π / 𝑛) ∈ ℝ+)
76rprene0d 11756 . . . . . . . 8 (𝑛 ∈ ℕ → ((π / 𝑛) ∈ ℝ ∧ (π / 𝑛) ≠ 0))
8 eldifsn 4260 . . . . . . . 8 ((π / 𝑛) ∈ (ℝ ∖ {0}) ↔ ((π / 𝑛) ∈ ℝ ∧ (π / 𝑛) ≠ 0))
97, 8sylibr 223 . . . . . . 7 (𝑛 ∈ ℕ → (π / 𝑛) ∈ (ℝ ∖ {0}))
109adantl 481 . . . . . 6 ((⊤ ∧ 𝑛 ∈ ℕ) → (π / 𝑛) ∈ (ℝ ∖ {0}))
11 eqidd 2611 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (π / 𝑛)) = (𝑛 ∈ ℕ ↦ (π / 𝑛)))
12 eqidd 2611 . . . . . 6 (⊤ → (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) = (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)))
13 fveq2 6103 . . . . . . 7 (𝑦 = (π / 𝑛) → (sin‘𝑦) = (sin‘(π / 𝑛)))
14 id 22 . . . . . . 7 (𝑦 = (π / 𝑛) → 𝑦 = (π / 𝑛))
1513, 14oveq12d 6567 . . . . . 6 (𝑦 = (π / 𝑛) → ((sin‘𝑦) / 𝑦) = ((sin‘(π / 𝑛)) / (π / 𝑛)))
1610, 11, 12, 15fmptco 6303 . . . . 5 (⊤ → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) = (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))))
17 eqid 2610 . . . . . . 7 (𝑛 ∈ ℕ ↦ (π / 𝑛)) = (𝑛 ∈ ℕ ↦ (π / 𝑛))
1817, 9fmpti 6291 . . . . . 6 (𝑛 ∈ ℕ ↦ (π / 𝑛)):ℕ⟶(ℝ ∖ {0})
19 pire 24014 . . . . . . . 8 π ∈ ℝ
2019recni 9931 . . . . . . 7 π ∈ ℂ
21 divcnv 14424 . . . . . . 7 (π ∈ ℂ → (𝑛 ∈ ℕ ↦ (π / 𝑛)) ⇝ 0)
2220, 21mp1i 13 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (π / 𝑛)) ⇝ 0)
23 sinccvg 30821 . . . . . 6 (((𝑛 ∈ ℕ ↦ (π / 𝑛)):ℕ⟶(ℝ ∖ {0}) ∧ (𝑛 ∈ ℕ ↦ (π / 𝑛)) ⇝ 0) → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) ⇝ 1)
2418, 22, 23sylancr 694 . . . . 5 (⊤ → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) ⇝ 1)
2516, 24eqbrtrrd 4607 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))) ⇝ 1)
26 2re 10967 . . . . . . . 8 2 ∈ ℝ
2726, 19remulcli 9933 . . . . . . 7 (2 · π) ∈ ℝ
28 circum.3 . . . . . . 7 𝑅 ∈ ℝ
2927, 28remulcli 9933 . . . . . 6 ((2 · π) · 𝑅) ∈ ℝ
3029recni 9931 . . . . 5 ((2 · π) · 𝑅) ∈ ℂ
3130a1i 11 . . . 4 (⊤ → ((2 · π) · 𝑅) ∈ ℂ)
32 circum.2 . . . . . 6 𝑃 = (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2)))))
33 nnex 10903 . . . . . . 7 ℕ ∈ V
3433mptex 6390 . . . . . 6 (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2))))) ∈ V
3532, 34eqeltri 2684 . . . . 5 𝑃 ∈ V
3635a1i 11 . . . 4 (⊤ → 𝑃 ∈ V)
37 eqid 2610 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) = (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦))
38 eldifi 3694 . . . . . . . . . . . 12 (𝑦 ∈ (ℝ ∖ {0}) → 𝑦 ∈ ℝ)
3938resincld 14712 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ∖ {0}) → (sin‘𝑦) ∈ ℝ)
40 eldifsni 4261 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ∖ {0}) → 𝑦 ≠ 0)
4139, 38, 40redivcld 10732 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ {0}) → ((sin‘𝑦) / 𝑦) ∈ ℝ)
4237, 41fmpti 6291 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)):(ℝ ∖ {0})⟶ℝ
43 fco 5971 . . . . . . . . 9 (((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)):(ℝ ∖ {0})⟶ℝ ∧ (𝑛 ∈ ℕ ↦ (π / 𝑛)):ℕ⟶(ℝ ∖ {0})) → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))):ℕ⟶ℝ)
4442, 18, 43mp2an 704 . . . . . . . 8 ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))):ℕ⟶ℝ
4516trud 1484 . . . . . . . . 9 ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) = (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))
4645feq1i 5949 . . . . . . . 8 (((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))):ℕ⟶ℝ ↔ (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))):ℕ⟶ℝ)
4744, 46mpbi 219 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))):ℕ⟶ℝ
4847ffvelrni 6266 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) ∈ ℝ)
4948adantl 481 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) ∈ ℝ)
5049recnd 9947 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) ∈ ℂ)
5126recni 9931 . . . . . . . . . . . . . . 15 2 ∈ ℂ
5251a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
5320a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → π ∈ ℂ)
54 nncn 10905 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
5554adantl 481 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
56 nnne0 10930 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
5756adantl 481 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0)
5852, 53, 55, 57divassd 10715 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · π) / 𝑘) = (2 · (π / 𝑘)))
5958oveq1d 6564 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · π) / 𝑘) / 2) = ((2 · (π / 𝑘)) / 2))
60 simpr 476 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
61 nndivre 10933 . . . . . . . . . . . . . . 15 ((π ∈ ℝ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℝ)
6219, 60, 61sylancr 694 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℝ)
6362recnd 9947 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℂ)
64 2ne0 10990 . . . . . . . . . . . . . 14 2 ≠ 0
6564a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 2 ≠ 0)
6663, 52, 65divcan3d 10685 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · (π / 𝑘)) / 2) = (π / 𝑘))
6759, 66eqtrd 2644 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · π) / 𝑘) / 2) = (π / 𝑘))
6867fveq2d 6107 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(((2 · π) / 𝑘) / 2)) = (sin‘(π / 𝑘)))
6962resincld 14712 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(π / 𝑘)) ∈ ℝ)
7069recnd 9947 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(π / 𝑘)) ∈ ℂ)
71 nnrp 11718 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
7271adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
73 rpdivcl 11732 . . . . . . . . . . . . 13 ((π ∈ ℝ+𝑘 ∈ ℝ+) → (π / 𝑘) ∈ ℝ+)
743, 72, 73sylancr 694 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℝ+)
7574rpne0d 11753 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ≠ 0)
7670, 63, 75divcan2d 10682 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = (sin‘(π / 𝑘)))
7768, 76eqtr4d 2647 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(((2 · π) / 𝑘) / 2)) = ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
7877oveq2d 6565 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑅 · (sin‘(((2 · π) / 𝑘) / 2))) = (𝑅 · ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
7928recni 9931 . . . . . . . . . 10 𝑅 ∈ ℂ
8079a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑅 ∈ ℂ)
81 oveq2 6557 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (π / 𝑛) = (π / 𝑘))
8281fveq2d 6107 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘(π / 𝑛)) = (sin‘(π / 𝑘)))
8382, 81oveq12d 6567 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((sin‘(π / 𝑛)) / (π / 𝑛)) = ((sin‘(π / 𝑘)) / (π / 𝑘)))
84 eqid 2610 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))) = (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))
85 ovex 6577 . . . . . . . . . . . 12 ((sin‘(π / 𝑘)) / (π / 𝑘)) ∈ V
8683, 84, 85fvmpt 6191 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) = ((sin‘(π / 𝑘)) / (π / 𝑘)))
8786adantl 481 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) = ((sin‘(π / 𝑘)) / (π / 𝑘)))
8887, 50eqeltrrd 2689 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((sin‘(π / 𝑘)) / (π / 𝑘)) ∈ ℂ)
8980, 63, 88mulassd 9942 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = (𝑅 · ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
9078, 89eqtr4d 2647 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑅 · (sin‘(((2 · π) / 𝑘) / 2))) = ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
9190oveq2d 6565 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))) = ((2 · 𝑘) · ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
92 mulcl 9899 . . . . . . . 8 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · 𝑘) ∈ ℂ)
9351, 55, 92sylancr 694 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℂ)
94 mulcl 9899 . . . . . . . 8 ((𝑅 ∈ ℂ ∧ (π / 𝑘) ∈ ℂ) → (𝑅 · (π / 𝑘)) ∈ ℂ)
9579, 63, 94sylancr 694 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑅 · (π / 𝑘)) ∈ ℂ)
9693, 95, 88mulassd 9942 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) · (𝑅 · (π / 𝑘))) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = ((2 · 𝑘) · ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
9752, 55, 80, 63mul4d 10127 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (π / 𝑘))) = ((2 · 𝑅) · (𝑘 · (π / 𝑘))))
9853, 55, 57divcan2d 10682 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 · (π / 𝑘)) = π)
9998oveq2d 6565 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑅) · (𝑘 · (π / 𝑘))) = ((2 · 𝑅) · π))
10052, 80, 53mul32d 10125 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑅) · π) = ((2 · π) · 𝑅))
10199, 100eqtrd 2644 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑅) · (𝑘 · (π / 𝑘))) = ((2 · π) · 𝑅))
10297, 101eqtrd 2644 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (π / 𝑘))) = ((2 · π) · 𝑅))
103102oveq1d 6564 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) · (𝑅 · (π / 𝑘))) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = (((2 · π) · 𝑅) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
10491, 96, 1033eqtr2d 2650 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))) = (((2 · π) · 𝑅) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
105 oveq2 6557 . . . . . . . 8 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
106 circum.1 . . . . . . . . . . . 12 𝐴 = ((2 · π) / 𝑛)
107 oveq2 6557 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((2 · π) / 𝑛) = ((2 · π) / 𝑘))
108106, 107syl5eq 2656 . . . . . . . . . . 11 (𝑛 = 𝑘𝐴 = ((2 · π) / 𝑘))
109108oveq1d 6564 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝐴 / 2) = (((2 · π) / 𝑘) / 2))
110109fveq2d 6107 . . . . . . . . 9 (𝑛 = 𝑘 → (sin‘(𝐴 / 2)) = (sin‘(((2 · π) / 𝑘) / 2)))
111110oveq2d 6565 . . . . . . . 8 (𝑛 = 𝑘 → (𝑅 · (sin‘(𝐴 / 2))) = (𝑅 · (sin‘(((2 · π) / 𝑘) / 2))))
112105, 111oveq12d 6567 . . . . . . 7 (𝑛 = 𝑘 → ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2)))) = ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))))
113 ovex 6577 . . . . . . 7 ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))) ∈ V
114112, 32, 113fvmpt 6191 . . . . . 6 (𝑘 ∈ ℕ → (𝑃𝑘) = ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))))
115114adantl 481 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) = ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))))
11687oveq2d 6565 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · π) · 𝑅) · ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘)) = (((2 · π) · 𝑅) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
117104, 115, 1163eqtr4d 2654 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) = (((2 · π) · 𝑅) · ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘)))
1181, 2, 25, 31, 36, 50, 117climmulc2 14215 . . 3 (⊤ → 𝑃 ⇝ (((2 · π) · 𝑅) · 1))
119118trud 1484 . 2 𝑃 ⇝ (((2 · π) · 𝑅) · 1)
12030mulid1i 9921 . 2 (((2 · π) · 𝑅) · 1) = ((2 · π) · 𝑅)
121119, 120breqtri 4608 1 𝑃 ⇝ ((2 · π) · 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wtru 1476  wcel 1977  wne 2780  Vcvv 3173  cdif 3537  {csn 4125   class class class wbr 4583  cmpt 4643  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815  1c1 9816   · cmul 9820   / cdiv 10563  cn 10897  2c2 10947  +crp 11708  cli 14063  sincsin 14633  πcpi 14636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ioc 12051  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-fac 12923  df-bc 12952  df-hash 12980  df-shft 13655  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-limsup 14050  df-clim 14067  df-rlim 14068  df-sum 14265  df-ef 14637  df-sin 14639  df-cos 14640  df-pi 14642  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator