ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  spime GIF version

Theorem spime 1629
Description: Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Mar-2018.)
Hypotheses
Ref Expression
spime.1 𝑥𝜑
spime.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spime (𝜑 → ∃𝑥𝜓)

Proof of Theorem spime
StepHypRef Expression
1 spime.1 . . . 4 𝑥𝜑
21a1i 9 . . 3 (⊤ → Ⅎ𝑥𝜑)
3 spime.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
42, 3spimed 1628 . 2 (⊤ → (𝜑 → ∃𝑥𝜓))
54trud 1252 1 (𝜑 → ∃𝑥𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wtru 1244  wnf 1349  wex 1381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-4 1400  ax-i9 1423  ax-ial 1427
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350
This theorem is referenced by:  spimev  1741
  Copyright terms: Public domain W3C validator