Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  spime Structured version   GIF version

Theorem spime 1607
 Description: Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Mar-2018.)
Hypotheses
Ref Expression
spime.1 xφ
spime.2 (x = y → (φψ))
Assertion
Ref Expression
spime (φxψ)

Proof of Theorem spime
StepHypRef Expression
1 spime.1 . . . 4 xφ
21a1i 9 . . 3 ( ⊤ → Ⅎxφ)
3 spime.2 . . 3 (x = y → (φψ))
42, 3spimed 1606 . 2 ( ⊤ → (φxψ))
54trud 1235 1 (φxψ)
 Colors of variables: wff set class Syntax hints:   → wi 4   ⊤ wtru 1227  Ⅎwnf 1325  ∃wex 1358 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1312  ax-gen 1314  ax-ie1 1359  ax-ie2 1360  ax-4 1377  ax-i9 1400  ax-ial 1405 This theorem depends on definitions:  df-bi 110  df-tru 1229  df-nf 1326 This theorem is referenced by:  spimev  1719
 Copyright terms: Public domain W3C validator