Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spime | GIF version |
Description: Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) |
Ref | Expression |
---|---|
spime.1 | ⊢ Ⅎ𝑥𝜑 |
spime.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
spime | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spime.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
3 | spime.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
4 | 2, 3 | spimed 1628 | . 2 ⊢ (⊤ → (𝜑 → ∃𝑥𝜓)) |
5 | 4 | trud 1252 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊤wtru 1244 Ⅎwnf 1349 ∃wex 1381 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-i9 1423 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 |
This theorem is referenced by: spimev 1741 |
Copyright terms: Public domain | W3C validator |