Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spimev | GIF version |
Description: Distinct-variable version of spime 1629. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
spimev.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
spimev | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1421 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | spimev.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
3 | 1, 2 | spime 1629 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1381 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 |
This theorem is referenced by: speiv 1742 rnxpid 4755 |
Copyright terms: Public domain | W3C validator |