ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcid GIF version

Theorem sbcid 2779
Description: An identity theorem for substitution. See sbid 1657. (Contributed by Mario Carneiro, 18-Feb-2017.)
Assertion
Ref Expression
sbcid ([𝑥 / 𝑥]𝜑𝜑)

Proof of Theorem sbcid
StepHypRef Expression
1 sbsbc 2768 . 2 ([𝑥 / 𝑥]𝜑[𝑥 / 𝑥]𝜑)
2 sbid 1657 . 2 ([𝑥 / 𝑥]𝜑𝜑)
31, 2bitr3i 175 1 ([𝑥 / 𝑥]𝜑𝜑)
Colors of variables: wff set class
Syntax hints:  wb 98  [wsb 1645  [wsbc 2764
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-sbc 2765
This theorem is referenced by:  csbid  2859
  Copyright terms: Public domain W3C validator