![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sb4 | GIF version |
Description: One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sb4 | ⊢ (¬ ∀x x = y → ([y / x]φ → ∀x(x = y → φ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb1 1646 | . 2 ⊢ ([y / x]φ → ∃x(x = y ∧ φ)) | |
2 | equs5 1707 | . 2 ⊢ (¬ ∀x x = y → (∃x(x = y ∧ φ) → ∀x(x = y → φ))) | |
3 | 1, 2 | syl5 28 | 1 ⊢ (¬ ∀x x = y → ([y / x]φ → ∀x(x = y → φ))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 97 ∀wal 1240 ∃wex 1378 [wsb 1642 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 629 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-10 1393 ax-11 1394 ax-i12 1395 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 |
This theorem depends on definitions: df-bi 110 df-tru 1245 df-fal 1248 df-nf 1347 df-sb 1643 |
This theorem is referenced by: sb4b 1712 hbsb2 1714 |
Copyright terms: Public domain | W3C validator |