Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  hban GIF version

Theorem hban 1439
 Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑 ∧ 𝜓). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 2-Feb-2015.)
Hypotheses
Ref Expression
hb.1 (𝜑 → ∀𝑥𝜑)
hb.2 (𝜓 → ∀𝑥𝜓)
Assertion
Ref Expression
hban ((𝜑𝜓) → ∀𝑥(𝜑𝜓))

Proof of Theorem hban
StepHypRef Expression
1 hb.1 . . 3 (𝜑 → ∀𝑥𝜑)
2 hb.2 . . 3 (𝜓 → ∀𝑥𝜓)
31, 2anim12i 321 . 2 ((𝜑𝜓) → (∀𝑥𝜑 ∧ ∀𝑥𝜓))
4 19.26 1370 . 2 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
53, 4sylibr 137 1 ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97  ∀wal 1241 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338 This theorem depends on definitions:  df-bi 110 This theorem is referenced by:  hbbi  1440  hb3an  1442  hbsbv  1817  mopick  1978  eupicka  1980  mopick2  1983  cleqh  2137
 Copyright terms: Public domain W3C validator