Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cleqh Structured version   GIF version

Theorem cleqh 2134
 Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqf 2198. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
cleqh.1 (y Ax y A)
cleqh.2 (y Bx y B)
Assertion
Ref Expression
cleqh (A = Bx(x Ax B))
Distinct variable groups:   y,A   y,B   x,y
Allowed substitution hints:   A(x)   B(x)

Proof of Theorem cleqh
StepHypRef Expression
1 dfcleq 2031 . 2 (A = By(y Ay B))
2 ax-17 1416 . . . 4 ((x Ax B) → y(x Ax B))
3 dfbi2 368 . . . . 5 ((y Ay B) ↔ ((y Ay B) (y By A)))
4 cleqh.1 . . . . . . 7 (y Ax y A)
5 cleqh.2 . . . . . . 7 (y Bx y B)
64, 5hbim 1434 . . . . . 6 ((y Ay B) → x(y Ay B))
75, 4hbim 1434 . . . . . 6 ((y By A) → x(y By A))
86, 7hban 1436 . . . . 5 (((y Ay B) (y By A)) → x((y Ay B) (y By A)))
93, 8hbxfrbi 1358 . . . 4 ((y Ay B) → x(y Ay B))
10 eleq1 2097 . . . . . 6 (x = y → (x Ay A))
11 eleq1 2097 . . . . . 6 (x = y → (x By B))
1210, 11bibi12d 224 . . . . 5 (x = y → ((x Ax B) ↔ (y Ay B)))
1312biimpd 132 . . . 4 (x = y → ((x Ax B) → (y Ay B)))
142, 9, 13cbv3h 1628 . . 3 (x(x Ax B) → y(y Ay B))
1512equcoms 1591 . . . . 5 (y = x → ((x Ax B) ↔ (y Ay B)))
1615biimprd 147 . . . 4 (y = x → ((y Ay B) → (x Ax B)))
179, 2, 16cbv3h 1628 . . 3 (y(y Ay B) → x(x Ax B))
1814, 17impbii 117 . 2 (x(x Ax B) ↔ y(y Ay B))
191, 18bitr4i 176 1 (A = Bx(x Ax B))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98  ∀wal 1240   = wceq 1242   ∈ wcel 1390 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019 This theorem depends on definitions:  df-bi 110  df-nf 1347  df-cleq 2030  df-clel 2033 This theorem is referenced by:  abeq2  2143
 Copyright terms: Public domain W3C validator