Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsb3lem | GIF version |
Description: Lemma for eqsb3 2141. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
eqsb3lem | ⊢ ([𝑥 / 𝑦]𝑦 = 𝐴 ↔ 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1421 | . 2 ⊢ Ⅎ𝑦 𝑥 = 𝐴 | |
2 | eqeq1 2046 | . 2 ⊢ (𝑦 = 𝑥 → (𝑦 = 𝐴 ↔ 𝑥 = 𝐴)) | |
3 | 1, 2 | sbie 1674 | 1 ⊢ ([𝑥 / 𝑦]𝑦 = 𝐴 ↔ 𝑥 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 = wceq 1243 [wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-cleq 2033 |
This theorem is referenced by: eqsb3 2141 |
Copyright terms: Public domain | W3C validator |