Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcdif Structured version   GIF version

Theorem bdcdif 9296
Description: The difference of two bounded classes is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypotheses
Ref Expression
bdcdif.1 BOUNDED A
bdcdif.2 BOUNDED B
Assertion
Ref Expression
bdcdif BOUNDED (AB)

Proof of Theorem bdcdif
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 bdcdif.1 . . . . 5 BOUNDED A
21bdeli 9281 . . . 4 BOUNDED x A
3 bdcdif.2 . . . . . 6 BOUNDED B
43bdeli 9281 . . . . 5 BOUNDED x B
54ax-bdn 9252 . . . 4 BOUNDED ¬ x B
62, 5ax-bdan 9250 . . 3 BOUNDED (x A ¬ x B)
76bdcab 9284 . 2 BOUNDED {x ∣ (x A ¬ x B)}
8 df-dif 2914 . 2 (AB) = {x ∣ (x A ¬ x B)}
97, 8bdceqir 9279 1 BOUNDED (AB)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   wa 97   wcel 1390  {cab 2023  cdif 2908  BOUNDED wbdc 9275
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416  ax-ial 1424  ax-ext 2019  ax-bd0 9248  ax-bdan 9250  ax-bdn 9252  ax-bdsb 9257
This theorem depends on definitions:  df-bi 110  df-clab 2024  df-cleq 2030  df-clel 2033  df-dif 2914  df-bdc 9276
This theorem is referenced by:  bdcnulALT  9301
  Copyright terms: Public domain W3C validator