Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcnulALT Structured version   GIF version

Theorem bdcnulALT 9321
Description: Alternate proof of bdcnul 9320. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 9299, or use the corresponding characterizations of its elements followed by bdelir 9302. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bdcnulALT BOUNDED

Proof of Theorem bdcnulALT
StepHypRef Expression
1 bdcvv 9312 . . 3 BOUNDED V
21, 1bdcdif 9316 . 2 BOUNDED (V ∖ V)
3 df-nul 3219 . 2 ∅ = (V ∖ V)
42, 3bdceqir 9299 1 BOUNDED
Colors of variables: wff set class
Syntax hints:  Vcvv 2551  cdif 2908  c0 3218  BOUNDED wbdc 9295
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-ext 2019  ax-bd0 9268  ax-bdim 9269  ax-bdan 9270  ax-bdn 9272  ax-bdeq 9275  ax-bdsb 9277
This theorem depends on definitions:  df-bi 110  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-v 2553  df-dif 2914  df-nul 3219  df-bdc 9296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator