Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdeli Structured version   GIF version

Theorem bdeli 9235
Description: Inference associated with bdel 9234. Its converse is bdelir 9236. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdeli.1 BOUNDED A
Assertion
Ref Expression
bdeli BOUNDED x A
Distinct variable group:   x,A

Proof of Theorem bdeli
StepHypRef Expression
1 bdeli.1 . 2 BOUNDED A
2 bdel 9234 . 2 (BOUNDED ABOUNDED x A)
31, 2ax-mp 7 1 BOUNDED x A
Colors of variables: wff set class
Syntax hints:   wcel 1390  BOUNDED wbd 9201  BOUNDED wbdc 9229
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-4 1397
This theorem depends on definitions:  df-bi 110  df-bdc 9230
This theorem is referenced by:  bdph  9239  bdcrab  9241  bdnel  9243  bdccsb  9249  bdcdif  9250  bdcun  9251  bdcin  9252  bdss  9253  bdsnss  9262  bdciun  9267  bdciin  9268  bdinex1  9284  bj-uniex2  9301  bj-inf2vnlem3  9356
  Copyright terms: Public domain W3C validator