![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ax9vsep | GIF version |
Description: Derive a weakened version of ax-9 1424, where 𝑥 and 𝑦 must be distinct, from Separation ax-sep 3875 and Extensionality ax-ext 2022. In intuitionistic logic a9evsep 3879 is stronger and also holds. (Contributed by NM, 12-Nov-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax9vsep | ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a9evsep 3879 | . 2 ⊢ ∃𝑥 𝑥 = 𝑦 | |
2 | exalim 1391 | . 2 ⊢ (∃𝑥 𝑥 = 𝑦 → ¬ ∀𝑥 ¬ 𝑥 = 𝑦) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∀wal 1241 = wceq 1243 ∃wex 1381 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 ax-ext 2022 ax-sep 3875 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |