ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exalim Structured version   GIF version

Theorem exalim 1371
Description: One direction of a classical definition of existential quantification. One direction of Definition of [Margaris] p. 49. For a decidable proposition, this is an equivalence, as seen as dfexdc 1370. (Contributed by Jim Kingdon, 29-Jul-2018.)
Assertion
Ref Expression
exalim (xφ → ¬ x ¬ φ)

Proof of Theorem exalim
StepHypRef Expression
1 alnex 1368 . . 3 (x ¬ φ ↔ ¬ xφ)
21biimpi 113 . 2 (x ¬ φ → ¬ xφ)
32con2i 545 1 (xφ → ¬ x ¬ φ)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1314  wex 1361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 532  ax-in2 533  ax-5 1315  ax-gen 1317  ax-ie2 1363
This theorem depends on definitions:  df-bi 110  df-tru 1231  df-fal 1232
This theorem is referenced by:  n0rf  3211  ax9vsep  3832
  Copyright terms: Public domain W3C validator