ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anc2li Structured version   GIF version

Theorem anc2li 312
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.)
Hypothesis
Ref Expression
anc2li.1 (φ → (ψχ))
Assertion
Ref Expression
anc2li (φ → (ψ → (φ χ)))

Proof of Theorem anc2li
StepHypRef Expression
1 anc2li.1 . 2 (φ → (ψχ))
2 id 19 . 2 (φφ)
31, 2jctild 299 1 (φ → (ψ → (φ χ)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 101
This theorem is referenced by:  imdistani  419  equvini  1638  sssnm  3516  tfis  4249  indpi  6326
  Copyright terms: Public domain W3C validator