ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anc2r GIF version

Theorem anc2r 311
Description: Conjoin antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
anc2r ((φ → (ψχ)) → (φ → (ψ → (χ φ))))

Proof of Theorem anc2r
StepHypRef Expression
1 pm3.21 251 . . 3 (φ → (χ → (χ φ)))
21imim2d 48 . 2 (φ → ((ψχ) → (ψ → (χ φ))))
32a2i 11 1 ((φ → (ψχ)) → (φ → (ψ → (χ φ))))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 101
This theorem is referenced by:  ssorduni  4179
  Copyright terms: Public domain W3C validator