ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  acexmidlemph GIF version

Theorem acexmidlemph 5505
Description: Lemma for acexmid 5511. (Contributed by Jim Kingdon, 6-Aug-2019.)
Hypotheses
Ref Expression
acexmidlem.a 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
acexmidlem.b 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
acexmidlem.c 𝐶 = {𝐴, 𝐵}
Assertion
Ref Expression
acexmidlemph (𝜑𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥

Proof of Theorem acexmidlemph
StepHypRef Expression
1 olc 632 . . . 4 (𝜑 → (𝑥 = ∅ ∨ 𝜑))
21ralrimivw 2393 . . 3 (𝜑 → ∀𝑥 ∈ {∅, {∅}} (𝑥 = ∅ ∨ 𝜑))
3 acexmidlem.a . . . . 5 𝐴 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)}
43eqeq2i 2050 . . . 4 ({∅, {∅}} = 𝐴 ↔ {∅, {∅}} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)})
5 rabid2 2486 . . . 4 ({∅, {∅}} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = ∅ ∨ 𝜑)} ↔ ∀𝑥 ∈ {∅, {∅}} (𝑥 = ∅ ∨ 𝜑))
64, 5bitri 173 . . 3 ({∅, {∅}} = 𝐴 ↔ ∀𝑥 ∈ {∅, {∅}} (𝑥 = ∅ ∨ 𝜑))
72, 6sylibr 137 . 2 (𝜑 → {∅, {∅}} = 𝐴)
8 olc 632 . . . 4 (𝜑 → (𝑥 = {∅} ∨ 𝜑))
98ralrimivw 2393 . . 3 (𝜑 → ∀𝑥 ∈ {∅, {∅}} (𝑥 = {∅} ∨ 𝜑))
10 acexmidlem.b . . . . 5 𝐵 = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)}
1110eqeq2i 2050 . . . 4 ({∅, {∅}} = 𝐵 ↔ {∅, {∅}} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)})
12 rabid2 2486 . . . 4 ({∅, {∅}} = {𝑥 ∈ {∅, {∅}} ∣ (𝑥 = {∅} ∨ 𝜑)} ↔ ∀𝑥 ∈ {∅, {∅}} (𝑥 = {∅} ∨ 𝜑))
1311, 12bitri 173 . . 3 ({∅, {∅}} = 𝐵 ↔ ∀𝑥 ∈ {∅, {∅}} (𝑥 = {∅} ∨ 𝜑))
149, 13sylibr 137 . 2 (𝜑 → {∅, {∅}} = 𝐵)
157, 14eqtr3d 2074 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 629   = wceq 1243  wral 2306  {crab 2310  c0 3224  {csn 3375  {cpr 3376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-ral 2311  df-rab 2315
This theorem is referenced by:  acexmidlemab  5506
  Copyright terms: Public domain W3C validator