ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbidm Structured version   Unicode version

Theorem sbidm 1728
Description: An idempotent law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.)
Assertion
Ref Expression
sbidm

Proof of Theorem sbidm
StepHypRef Expression
1 df-sb 1643 . . . . 5
21simplbi 259 . . . 4
32sbimi 1644 . . 3
4 sbequ8 1724 . . 3
53, 4sylibr 137 . 2
6 ax-1 5 . . 3
7 sb1 1646 . . . 4
8 pm4.24 375 . . . . . . . 8
9 ax-ie1 1379 . . . . . . . . 9
10919.41h 1572 . . . . . . . 8
118, 10bitr4i 176 . . . . . . 7
12 ax-1 5 . . . . . . . . . 10
1312anim2i 324 . . . . . . . . 9
1413anim1i 323 . . . . . . . 8
1514eximi 1488 . . . . . . 7
1611, 15sylbi 114 . . . . . 6
17 anass 381 . . . . . . 7
1817exbii 1493 . . . . . 6
1916, 18sylib 127 . . . . 5
201anbi2i 430 . . . . . 6
2120exbii 1493 . . . . 5
2219, 21sylibr 137 . . . 4
237, 22syl 14 . . 3
24 df-sb 1643 . . 3
256, 23, 24sylanbrc 394 . 2
265, 25impbii 117 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wb 98  wex 1378  wsb 1642
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-sb 1643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator