Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbidm | Unicode version |
Description: An idempotent law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.) |
Ref | Expression |
---|---|
sbidm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sb 1646 | . . . . 5 | |
2 | 1 | simplbi 259 | . . . 4 |
3 | 2 | sbimi 1647 | . . 3 |
4 | sbequ8 1727 | . . 3 | |
5 | 3, 4 | sylibr 137 | . 2 |
6 | ax-1 5 | . . 3 | |
7 | sb1 1649 | . . . 4 | |
8 | pm4.24 375 | . . . . . . . 8 | |
9 | ax-ie1 1382 | . . . . . . . . 9 | |
10 | 9 | 19.41h 1575 | . . . . . . . 8 |
11 | 8, 10 | bitr4i 176 | . . . . . . 7 |
12 | ax-1 5 | . . . . . . . . . 10 | |
13 | 12 | anim2i 324 | . . . . . . . . 9 |
14 | 13 | anim1i 323 | . . . . . . . 8 |
15 | 14 | eximi 1491 | . . . . . . 7 |
16 | 11, 15 | sylbi 114 | . . . . . 6 |
17 | anass 381 | . . . . . . 7 | |
18 | 17 | exbii 1496 | . . . . . 6 |
19 | 16, 18 | sylib 127 | . . . . 5 |
20 | 1 | anbi2i 430 | . . . . . 6 |
21 | 20 | exbii 1496 | . . . . 5 |
22 | 19, 21 | sylibr 137 | . . . 4 |
23 | 7, 22 | syl 14 | . . 3 |
24 | df-sb 1646 | . . 3 | |
25 | 6, 23, 24 | sylanbrc 394 | . 2 |
26 | 5, 25 | impbii 117 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wex 1381 wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-sb 1646 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |