ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb56 Structured version   Unicode version

Theorem sb56 1762
Description: Two equivalent ways of expressing the proper substitution of for in , when and are distinct. Theorem 6.2 of [Quine] p. 40. The proof does not involve df-sb 1643. (Contributed by NM, 14-Apr-2008.)
Assertion
Ref Expression
sb56
Distinct variable group:   ,
Allowed substitution hints:   (,)

Proof of Theorem sb56
StepHypRef Expression
1 hba1 1430 . 2
2 ax11v 1705 . . 3
3 ax-4 1397 . . . 4
43com12 27 . . 3
52, 4impbid 120 . 2
61, 5equsex 1613 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wb 98  wal 1240  wex 1378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-11 1394  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  sb6  1763  sb5  1764  alexeq  2664
  Copyright terms: Public domain W3C validator