ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbidv2 Structured version   Unicode version

Theorem rexbidv2 2323
Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 22-May-1999.)
Hypothesis
Ref Expression
rexbidv2.1
Assertion
Ref Expression
rexbidv2
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()   ()

Proof of Theorem rexbidv2
StepHypRef Expression
1 rexbidv2.1 . . 3
21exbidv 1703 . 2
3 df-rex 2306 . 2
4 df-rex 2306 . 2
52, 3, 43bitr4g 212 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wb 98  wex 1378   wcel 1390  wrex 2301
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-4 1397  ax-17 1416  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-rex 2306
This theorem is referenced by:  rexss  3001  rexsupp  5234  isoini  5400  ltexpi  6321  rexuz  8259
  Copyright terms: Public domain W3C validator