Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > neeq1 | Unicode version |
Description: Equality theorem for inequality. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
neeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2046 | . . 3 | |
2 | 1 | notbid 592 | . 2 |
3 | df-ne 2206 | . 2 | |
4 | df-ne 2206 | . 2 | |
5 | 2, 3, 4 | 3bitr4g 212 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 98 wceq 1243 wne 2204 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-5 1336 ax-gen 1338 ax-4 1400 ax-17 1419 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 df-ne 2206 |
This theorem is referenced by: neeq1i 2220 neeq1d 2223 nelrdva 2746 psseq1 3031 0inp0 3919 uzn0 8488 xrnemnf 8699 xrnepnf 8700 ngtmnft 8731 fztpval 8945 |
Copyright terms: Public domain | W3C validator |