ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nbn Unicode version

Theorem nbn 615
Description: The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 3-Oct-2013.)
Hypothesis
Ref Expression
nbn.1  |-  -.  ph
Assertion
Ref Expression
nbn  |-  ( -. 
ps 
<->  ( ps  <->  ph ) )

Proof of Theorem nbn
StepHypRef Expression
1 nbn.1 . . 3  |-  -.  ph
2 bibif 614 . . 3  |-  ( -. 
ph  ->  ( ( ps  <->  ph )  <->  -.  ps )
)
31, 2ax-mp 7 . 2  |-  ( ( ps  <->  ph )  <->  -.  ps )
43bicomi 123 1  |-  ( -. 
ps 
<->  ( ps  <->  ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 98
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  nbn3  616  nbfal  1254  n0rf  3233  eq0  3239  disj  3268  dm0rn0  4552  reldm0  4553
  Copyright terms: Public domain W3C validator